An official website of the United States government

NOD1/2 Signaling Pathway

Source
Taxonomic Scope
organism_specific
Category
pathway
Dates
  • Create:
    2019-01-17
  • Modify:
    2025-01-01
Description
NOD1 is ubiquitously expressed, while NOD2 expression is restricted to monocytes, macrophages, dendritic cells, and intestinal Paneth cells (Inohara et al. 2005). NOD1 and NOD2 activation induces transcription of immune response genes, predominantly mediated by the proinflammatory transcriptional factor NFkappaB but also by AP-1 and Elk-1 (Inohara et al. 2005). NFkappaB translocates to the nucleus following release from IkappaB proteins. NOD1 and NOD2 signaling involves an interaction between their caspase-recruitment domain (CARD) and the CARD of the kinase RIPK2 (RIP2/RICK). This leads to the activation of the NFkappaB pathway and MAPK pathways (Windheim et al. 2007). Activated NODs oligomerize via their NACHT domains, inducing physical proximity of RIP2 proteins that is believed to trigger their K63-linked polyubiquitination, facilitating recruitment of the TAK1 complex. RIP2 also recruits NEMO, bringing the TAK1 and IKK complexes into proximity, leading to NF-kappaB activation and activation of MAPK signaling. Recent studies have demonstrated that K63-linked regulatory ubiquitination of RIP2 is essential for the recruitment of TAK1 (Hasegawa et al. 2008, Hitosumatsu et al. 2008). As observed for toll-like receptor (TLR) signaling, ubiquitination can be removed by the deubiquitinating enzyme A20, thereby dampening NOD1/NOD2-induced NF-kappaB activation. NOD1 and NOD2 both induce K63-linked ubiquitination of RIP2, but NOD2-signaling appears to preferentially utilize the E3 ligase TRAF6, while TRAF2 and TRAF5 were shown to be important for NOD1-mediated signaling. In both cases, activation of NF-kappaB results in the upregulated transcription and production of inflammatory mediators.

1 Identity

1.1 Source

1.2 External ID

2 Interactions

3 Chemicals

4 Proteins

4.1 GlycoProteins

5 Genes

7 Information Sources

  1. Reactome
    LICENSE
    Reactome is an open source and open access resource, available to anyone and covered by two Creative Commons licenses: the terms of the Creative Commons Public Domain (CC0) License apply to all Reactome annotation files, e.g. identifier mapping data, specialized data files, and interaction data derived from Reactome; the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License apply to all software and code, e.g. relating to the functionality of the reactome.org, derived websites and webservices, the Curator Tool, the Functional Interaction application, SQL and Graph Database data dumps, and Pathway Illustrations (Enhanced High-Level Diagrams), Icon Library, Art and Branding Materials.
    https://reactome.org/license
  2. PubChem
  3. GlyCosmos Glycoscience Portal
    LICENSE
    All copyrightable parts of the datasets in GlyCosmos are under the Creative Commons Attribution (CC BY 4.0) License.
    https://glycosmos.org/license
CONTENTS