An official website of the United States government

Gar1 - GAR1 ribonucleoprotein (Norway rat)

Gene
Symbol
Dates
  • Create:
    2016-09-14
  • Modify:
    2025-01-17
Description
Predicted to enable box H/ACA snoRNA binding activity and telomerase RNA binding activity. Involved in snoRNA guided rRNA pseudouridine synthesis. Part of box H/ACA snoRNP complex. Orthologous to human GAR1 (GAR1 ribonucleoprotein).

1 Names and Identifiers

1.1 Synonyms

  • Nola1
  • H/ACA ribonucleoprotein complex subunit 1
  • GAR1 homolog, ribonucleoprotein
  • GAR1 ribonucleoprotein homolog
  • nucleolar protein family A member 1
  • nucleolar protein family A, member 1 (H/ACA small nucleolar RNPs)
  • snoRNP protein GAR1

1.2 Other Identifiers

1.2.1 Alliance Gene ID

1.2.2 Bgee Gene ID

1.2.3 RGD ID

1.2.4 VEuPathDB ID

1.2.5 Wikidata

3 Proteins

3.1 Protein Function

Required for ribosome biogenesis and telomere maintenance. Part of the H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA. This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1. Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. May also be required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (By similarity).

3.2 Protein 3D Structures

3.2.1 AlphaFold Structures

Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. DOI:10.1038/s41586-021-03819-2. PMID:34265844; PMCID:PMC8371605

3.3 Protein Targets

4 Interactions and Pathways

4.1 Interactions

4.2 Pathways

5 Biochemical Reactions

6 Expression

7 Literature

7.1 Gene-Chemical Co-Occurrences in Literature

7.2 Gene-Gene Co-Occurrences in Literature

7.3 Gene-Disease Co-Occurrences in Literature

8 Patents

8.1 Gene-Chemical Co-Occurrences in Patents

8.2 Gene-Gene Co-Occurrences in Patents

8.3 Gene-Disease Co-Occurrences in Patents

9 Information Sources

  1. NCBI Gene
    LICENSE
    NCBI Website and Data Usage Policies and Disclaimers
    https://www.ncbi.nlm.nih.gov/home/about/policies/
  2. PubChem
  3. Alliance of Genome Resources
    LICENSE
    All annotations and data produced by Alliance members that are accessible from alliancegenome.org are distributed under a CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
    https://www.alliancegenome.org/privacy-warranty-licensing
  4. NCBI Gene Expression Omnibus (GEO)
  5. Rat Genome Database (RGD)
    LICENSE
    Creative Commons Attribution 4.0 International license (CC BY 4.0)
    https://creativecommons.org/licenses/by/4.0/
  6. STRING: functional protein association networks
  7. Swiss Institute of Bioinformatics Bgee
    LICENSE
    Creative Commons Zero license (CC0)
    https://www.bgee.org/about/
  8. UniProt
    LICENSE
    We have chosen to apply the Creative Commons Attribution (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/) License to all copyrightable parts of our databases.
    https://www.uniprot.org/help/license
  9. VEuPathDB: The Eukaryotic Pathogen, Vector and Host Informatics Resource
    LICENSE
    All data on VEuPathDB websites are provided freely for public use.
    https://veupathdb.org/veupathdb/app/static-content/about.html
  10. Wikidata
  11. AlphaFold DB
    LICENSE
    All of the data provided is freely available for both academic and commercial use under Creative Commons Attribution 4.0 (CC-BY 4.0) licence terms.
    https://alphafold.ebi.ac.uk/faq
CONTENTS