Tarbp2 - Tarbp2 subunit of RISC loading complex (Norway rat)
Gene
Symbol
Taxonomy
Dates
- Create:2016-09-14
- Modify:2025-01-17
Description
Predicted to enable several functions, including RNA binding activity; protein homodimerization activity; and protein sequestering activity. Predicted to contribute to pre-miRNA binding activity. Predicted to be involved in several processes, including positive regulation of viral genome replication; regulation of defense response; and regulation of gene expression. Predicted to act upstream of or within several processes, including positive regulation of muscle cell differentiation; regulation of gene expression; and spermatid development. Predicted to be located in nuclear body. Predicted to be part of RISC complex and RISC-loading complex. Predicted to be active in cytoplasm and nucleus. Orthologous to human TARBP2 (TARBP2 subunit of RISC loading complex).
- RISC-loading complex subunit TARBP2
- TAR (HIV) RNA binding protein 2
- TAR (HIV-1) RNA binding protein 2
- TARBP2, RISC loading complex RNA binding subunit
Required for formation of the RNA induced silencing complex (RISC). Component of the RISC loading complex (RLC), also known as the micro-RNA (miRNA) loading complex (miRLC), which is composed of DICER1, AGO2 and TARBP2. Within the RLC/miRLC, DICER1 and TARBP2 are required to process precursor miRNAs (pre-miRNAs) to mature miRNAs and then load them onto AGO2. AGO2 bound to the mature miRNA constitutes the minimal RISC and may subsequently dissociate from DICER1 and TARBP2. May also play a role in the production of short interfering RNAs (siRNAs) from double-stranded RNA (dsRNA) by DICER1 (By similarity). Binds in vitro to the PRM1 3'-UTR (By similarity). Seems to act as a repressor of translation (By similarity). For some pre-miRNA substrates, may also alter the choice of cleavage site by DICER1 (By similarity). Negatively regulates IRF7-mediated IFN-beta signaling triggered by viral infection by inhibiting the phosphorylation of IRF7 and promoting its 'Lys'-48-linked ubiquitination and degradation (By similarity).
Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. DOI:10.1038/s41586-021-03819-2. PMID:34265844; PMCID:PMC8371605
- NCBI GeneLICENSENCBI Website and Data Usage Policies and Disclaimershttps://www.ncbi.nlm.nih.gov/home/about/policies/
- PubChem
- Alliance of Genome ResourcesLICENSEAll annotations and data produced by Alliance members that are accessible from alliancegenome.org are distributed under a CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).https://www.alliancegenome.org/privacy-warranty-licensing
- NCBI Gene Expression Omnibus (GEO)
- Rat Genome Database (RGD)LICENSECreative Commons Attribution 4.0 International license (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
- STRING: functional protein association networks
- Swiss Institute of Bioinformatics Bgee
- UniProtLICENSEWe have chosen to apply the Creative Commons Attribution (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/) License to all copyrightable parts of our databases.https://www.uniprot.org/help/license
- Wikidata
- AlphaFold DBLICENSEAll of the data provided is freely available for both academic and commercial use under Creative Commons Attribution 4.0 (CC-BY 4.0) licence terms.https://alphafold.ebi.ac.uk/faq
CONTENTS