An official website of the United States government

Tcp1 - t-complex 1 (Norway rat)

Gene
Symbol
Dates
  • Create:
    2016-09-14
  • Modify:
    2025-01-18
Description
Predicted to enable protein folding chaperone; ubiquitin protein ligase binding activity; and unfolded protein binding activity. Predicted to be involved in several processes, including chaperone mediated protein folding independent of cofactor; positive regulation of protein localization to Cajal body; and positive regulation of telomerase RNA localization to Cajal body. Predicted to act upstream of with a positive effect on scaRNA localization to Cajal body. Predicted to act upstream of or within binding activity of sperm to zona pellucida. Located in heterochromatin. Orthologous to human TCP1 (t-complex 1).

1 Names and Identifiers

1.1 Synonyms

  • CCTalpha
  • Tcp-1
  • T-complex protein 1 subunit alpha
  • CCT-alpha
  • TCP-1-alpha

1.2 Other Identifiers

1.2.1 Ensembl ID

1.2.2 Alliance Gene ID

1.2.3 Bgee Gene ID

1.2.4 RGD ID

1.2.5 Wikidata

3 Proteins

3.1 Protein Function

Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of proteins upon ATP hydrolysis. The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance. As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia. The TRiC complex plays a role in the folding of actin and tubulin.

3.2 Protein 3D Structures

3.2.1 AlphaFold Structures

Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. DOI:10.1038/s41586-021-03819-2. PMID:34265844; PMCID:PMC8371605

3.3 Protein Targets

4 Interactions and Pathways

4.1 Interactions

4.2 Pathways

5 Biochemical Reactions

6 Expression

7 Literature

7.1 Consolidated References

7.2 Gene-Chemical Co-Occurrences in Literature

7.3 Gene-Gene Co-Occurrences in Literature

7.4 Gene-Disease Co-Occurrences in Literature

8 Patents

8.1 Gene-Chemical Co-Occurrences in Patents

8.2 Gene-Gene Co-Occurrences in Patents

8.3 Gene-Disease Co-Occurrences in Patents

9 Information Sources

  1. NCBI Gene
    LICENSE
    NCBI Website and Data Usage Policies and Disclaimers
    https://www.ncbi.nlm.nih.gov/home/about/policies/
  2. PubChem
  3. Alliance of Genome Resources
    LICENSE
    All annotations and data produced by Alliance members that are accessible from alliancegenome.org are distributed under a CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
    https://www.alliancegenome.org/privacy-warranty-licensing
  4. BioGRID
    LICENSE
    The MIT License (MIT); Copyright Mike Tyers Lab
    https://wiki.thebiogrid.org/doku.php/terms_and_conditions
  5. STRING: functional protein association networks
  6. NCBI Gene Expression Omnibus (GEO)
  7. Rat Genome Database (RGD)
    LICENSE
    Creative Commons Attribution 4.0 International license (CC BY 4.0)
    https://creativecommons.org/licenses/by/4.0/
  8. Swiss Institute of Bioinformatics Bgee
    LICENSE
    Creative Commons Zero license (CC0)
    https://www.bgee.org/about/
  9. UniProt
    LICENSE
    We have chosen to apply the Creative Commons Attribution (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/) License to all copyrightable parts of our databases.
    https://www.uniprot.org/help/license
  10. Wikidata
  11. AlphaFold DB
    LICENSE
    All of the data provided is freely available for both academic and commercial use under Creative Commons Attribution 4.0 (CC-BY 4.0) licence terms.
    https://alphafold.ebi.ac.uk/faq
CONTENTS