Curium
Minute amounts of curium probably exist in natural deposits of uranium, as a result of a sequence of neutron captures and beta decays sustained by the very low flux of neutrons naturally present in uranium ores. The presence of natural curium, however, has never been detected. 242Cm and 244Cm are available in multigram quantities. 248Cm has been produced only in milligram amounts. Curium is similar in some regards to gadolinium, its rare earth homolog, but it has a more complex crystal structure. Curium metal is lustrous, malleable, silver in color, chemically reactive, and is more electropositive than aluminum. Curium metal exist in two crystal forms, a double hexagonal close packed (dhcp) and a high temperature face-centered cubic close packed (fcc) structure. Metallic curium dissolves rapidly in dilute acid to form Cm(III) solutions. Curium metal surfaces rapidly oxidize in air to form a thin film possibly starting out as CmO, Oxidation then progressing to Cm2O3, and eventually to form stable CmO2. Note however that the formation of divalent compounds of curium such as CmO have never been observed in bulk form. Most compounds and solutions of trivalent curium are quite stable and are faintly yellow or yellow-green in color. The stability of the trivalent state for curium is attributed to the half-filled 5f7 electron shell configuration. Curium in the tetravalent state is meta-stable in concentrated fluoride solutions but very stable in the solid state, primarily as the oxides and fluorides. Because curium isotopes are available in macro quantities a number of curium compounds have been prepared and characterized with the majority in the trivalent state.
242Cm generates about three watts of thermal energy per gram. This compares to one-half watt per gram of 238Pu. Both 242Cm and 244Cm have been used as power sources for space and medical uses. 244Cm is now offered for sale at $100/mg. Curium absorbed into the body accumulates in the bones, and is therefore very toxic as its radiation destroys the red-cell forming mechanism. The maximum permissible total body burden of 244Cm (soluble) in a human being is 0.3 microcurie.
This element reviewed and Updated by Dr. David Hobart, 2011
Since only milligram amounts of curium have ever been produced, there are currently no commercial applications for it, although it might be used in radioisotope thermoelectric generators in the future. Curium is primarily used for basic scientific research.
Scientists have produced several curium compounds. They include: curium dioxide (CmO2), curium trioxide (Cm2O3), curium bromide (CmBr3), curium chloride (CmCl3), curium chloride (CmCl3), curium tetrafluoride (CmF4) and curium iodide (CmI3). As with the element, the compounds currently have no commercial applications and are primarily used for basic scientific research.
244Cm and 242Cm (with half-lives of 18.1 years and 163 days, respectively) are strong alpha emitters (see alpha decay). The alpha emission from these isotopes creates a considerable quantity of heat that makes them useful as alpha particle sources, as well as heat generators in RTGs (radioisotopic thermoelectric generators) [75]. During a number of space missions based in America and Europe, 244Cm was the source used for the alpha particle X-ray spectrometer that was on board vehicles such as the Mars Exploration Rover and the Rosetta/Philae [75], [618]. 244Cm has a large neutron capture to neutron fission cross-section ratio and has been used in a nuclear reactor to produce higher mass radio-isotopes of curium (Fig. IUPAC.96.1) [75], [618].
- PubChem
- Atomic Mass Data Center (AMDC), International Atomic Energy Agency (IAEA)
- IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW)Curiumhttps://www.ciaaw.org/
- IUPAC Periodic Table of the Elements and Isotopes (IPTEI)LICENSECopyright (c) 2020 International Union of Pure and Applied Chemistry. The International Union of Pure and Applied Chemistry (IUPAC) contribution within Pubchem is provided under a CC-BY-NC-ND 4.0 license, unless otherwise stated.https://creativecommons.org/licenses/by-nc-nd/4.0/
- Los Alamos National Laboratory, U.S. Department of Energy
- Jefferson Lab, U.S. Department of EnergyLICENSEPlease see citation and linking information: https://education.jlab.org/faq/index.htmlhttps://www.jlab.org/privacy-and-security-notice
- NIST Physical Measurement Laboratory
- PubChem ElementsCurium