An official website of the United States government

Cefepime

PubChem CID
5479537
Structure
Cefepime_small.png
Cefepime_3D_Structure.png
Molecular Formula
Synonyms
  • cefepime
  • Maxipime
  • Cefepima
  • 88040-23-7
  • Cefepimum
Molecular Weight
480.6 g/mol
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Dates
  • Create:
    2005-08-01
  • Modify:
    2025-01-11
Description
Cefepime is a cephalosporin bearing (1-methylpyrrolidinium-1-yl)methyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It has a role as an antibacterial drug. It is a cephalosporin and an oxime O-ether. It is a conjugate base of a cefepime(1+).
Cefepime is a fourth-generation cephalosporin antibiotic developed in 1994. Cefepime is active against Gram-positive and Gram-negative bacteria, and has greater activity against both compared to third-generation antibiotics. Cefepime is normally used to treat severe nosocomial pneumonia and infections caused by multi-resistant microorganisms such as Pseudomonas aeruginosa, and is also indicated for the empirical treatment of febrile neutropenia. The popularity of its third-generation predecessors, its clinical efficacy, and the high prevalence of multidrug-resistant bacteria might be some of the factors leading to an increase in the use of cefepime. The activity of cefepime against Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus is due to its high stability toward beta-lactamases. In general, cefepime seems to be well tolerated; however, patients treated with this antibiotic, especially those with renal impairment, may develop neurotoxicity.
Cefepime is a Cephalosporin Antibacterial.

1 Structures

1.1 2D Structure

Chemical Structure Depiction
Cefepime.png

1.2 3D Conformer

2 Names and Identifiers

2.1 Computed Descriptors

2.1.1 IUPAC Name

(6R,7R)-7-[[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(1-methylpyrrolidin-1-ium-1-yl)methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate
Computed by Lexichem TK 2.7.0 (PubChem release 2021.10.14)

2.1.2 InChI

InChI=1S/C19H24N6O5S2/c1-25(5-3-4-6-25)7-10-8-31-17-13(16(27)24(17)14(10)18(28)29)22-15(26)12(23-30-2)11-9-32-19(20)21-11/h9,13,17H,3-8H2,1-2H3,(H3-,20,21,22,26,28,29)/b23-12-/t13-,17-/m1/s1
Computed by InChI 1.0.6 (PubChem release 2021.10.14)

2.1.3 InChIKey

HVFLCNVBZFFHBT-ZKDACBOMSA-N
Computed by InChI 1.0.6 (PubChem release 2021.10.14)

2.1.4 SMILES

C[N+]1(CCCC1)CC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)[O-]
Computed by OEChem 2.3.0 (PubChem release 2024.12.12)

2.2 Molecular Formula

C19H24N6O5S2
Computed by PubChem 2.2 (PubChem release 2021.10.14)

2.3 Other Identifiers

2.3.1 CAS

149261-27-8

2.3.2 Deprecated CAS

107648-84-0

2.3.3 European Community (EC) Number

2.3.4 UNII

2.3.5 ChEBI ID

2.3.6 ChEMBL ID

2.3.7 DrugBank ID

2.3.8 DSSTox Substance ID

2.3.9 HMDB ID

2.3.10 KEGG ID

2.3.11 Metabolomics Workbench ID

2.3.12 NCI Thesaurus Code

2.3.13 PharmGKB ID

2.3.14 RXCUI

2.3.15 Wikidata

2.3.16 Wikipedia

2.4 Synonyms

2.4.1 MeSH Entry Terms

  • Axépim
  • BMY 28142
  • BMY-28142
  • BMY28142
  • cefepim
  • cefepime
  • cefepime hydrochloride
  • Maxipime
  • Quadrocef

2.4.2 Depositor-Supplied Synonyms

3 Chemical and Physical Properties

3.1 Computed Properties

Property Name
Molecular Weight
Property Value
480.6 g/mol
Reference
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Property Name
XLogP3
Property Value
-0.1
Reference
Computed by XLogP3 3.0 (PubChem release 2021.10.14)
Property Name
Hydrogen Bond Donor Count
Property Value
2
Reference
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Property Name
Hydrogen Bond Acceptor Count
Property Value
10
Reference
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Property Name
Rotatable Bond Count
Property Value
6
Reference
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Property Name
Exact Mass
Property Value
480.12496023 Da
Reference
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Property Name
Monoisotopic Mass
Property Value
480.12496023 Da
Reference
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Property Name
Topological Polar Surface Area
Property Value
204 Ų
Reference
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Property Name
Heavy Atom Count
Property Value
32
Reference
Computed by PubChem
Property Name
Formal Charge
Property Value
0
Reference
Computed by PubChem
Property Name
Complexity
Property Value
869
Reference
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Property Name
Isotope Atom Count
Property Value
0
Reference
Computed by PubChem
Property Name
Defined Atom Stereocenter Count
Property Value
2
Reference
Computed by PubChem
Property Name
Undefined Atom Stereocenter Count
Property Value
0
Reference
Computed by PubChem
Property Name
Defined Bond Stereocenter Count
Property Value
1
Reference
Computed by PubChem
Property Name
Undefined Bond Stereocenter Count
Property Value
0
Reference
Computed by PubChem
Property Name
Covalently-Bonded Unit Count
Property Value
1
Reference
Computed by PubChem
Property Name
Compound Is Canonicalized
Property Value
Yes
Reference
Computed by PubChem (release 2021.10.14)

3.2 Experimental Properties

3.2.1 Physical Description

Solid

3.2.2 Melting Point

150ºC
Prabhakar et al. Pharmacology in Clinical Neurosciences: A Quick Guide. 2020, Springer Nature. p 321.

3.2.3 Solubility

0.017 g/L
Prabhakar et al. Pharmacology in Clinical Neurosciences: A Quick Guide. 2020, Springer Nature. p 321.
1.73e-02 g/L

3.3 Chemical Classes

3.3.1 Drugs

Pharmaceuticals -> Antibiotics
S6 | ITNANTIBIOTIC | Antibiotic List from the ITN MSCA ANSWER | DOI:10.5281/zenodo.2621956
S57 | GREEKPHARMA | Suspect Pharmaceuticals from the National Organization of Medicine, Greece | DOI:10.5281/zenodo.3248883
3.3.1.1 Human Drugs
Breast Feeding; Lactation; Milk, Human; Anti-Infective Agents; Antibacterial Agents; Cephalosporins
Human drug -> Discontinued

5 Chemical Vendors

6 Drug and Medication Information

6.1 Drug Indication

Cefepime is indicated for the treatment of pneumonia caused by susceptible bacteria, and for empiric therapy for febrile neutropenic patients. Cefepime is also indicated for the treatment of uncomplicated and complicated urinary tract infections (cUTI) including pyelonephritis, uncomplicated skin and skin structure infections, and complicated intra-abdominal infections (used in combination with [metronidazole]) in adults caused by susceptible bacteria. Cefepime is also used in combination with [enmetazobactam] to treat cUTI.

6.2 Drug Classes

Breast Feeding; Lactation; Milk, Human; Anti-Infective Agents; Antibacterial Agents; Cephalosporins

6.3 FDA National Drug Code Directory

6.4 Drug Labels

Drug and label

6.5 Clinical Trials

6.5.1 ClinicalTrials.gov

6.5.2 EU Clinical Trials Register

6.5.3 NIPH Clinical Trials Search of Japan

7 Pharmacology and Biochemistry

7.1 Pharmacodynamics

Cefepime is a fourth-generation cephalosporin antibiotic. It is active against Gram-negative bacteria such as _Enterobacter_ spp., _Escherichia coli_, _Klebsiella pneumoniae_, _Proteus mirabilis_ and _Pseudomonas aeruginosa_, and Gram-positive bacteria such as _Staphylococcus aureus_ (methicillin-susceptible isolates only), _Streptococcus pneumoniae_, _Streptococcus pyogenes_ and Viridans group streptococci. Compared to third-generation cephalosporins, cefepime has an extended Gram-negative coverage. Whereas other cephalosporins are degraded by plasmid- and chromosome-mediated beta-lactamases, cefepime is stable and not significantly hydrolyzed by these enzymes. Cefepime is also a poor inducer of type 1 beta-lactamases and, therefore, a good alternative against bacteria resistant to third-generation cephalosporins. In animal models of infection, the time that the unbound plasma concentration of cefepime exceeds the minimum inhibitory concentration (MIC) of infecting organisms has been shown to correlate with treatment efficacy. It has been suggested that cefepime can cross the inflamed blood-brain barrier. This, along with its ability to inhibit γ-aminobutyric acid (GABA), could lead to the neurotoxic effects observed in some of the patients treated with cefepime.

7.2 MeSH Pharmacological Classification

Anti-Bacterial Agents
Substances that inhibit the growth or reproduction of BACTERIA. (See all compounds classified as Anti-Bacterial Agents.)

7.3 FDA Pharmacological Classification

1 of 2
FDA UNII
807PW4VQE3
Active Moiety
CEFEPIME
Pharmacological Classes
Established Pharmacologic Class [EPC] - Cephalosporin Antibacterial
Pharmacological Classes
Chemical Structure [CS] - Cephalosporins
FDA Pharmacology Summary
Cefepime is a Cephalosporin Antibacterial.
2 of 2
Non-Proprietary Name
CEFEPIME
Pharmacological Classes
Cephalosporins [CS]; Cephalosporin Antibacterial [EPC]

7.4 ATC Code

J - Antiinfectives for systemic use

J01 - Antibacterials for systemic use

J01D - Other beta-lactam antibacterials

J01DE - Fourth-generation cephalosporins

J01DE01 - Cefepime

7.5 Absorption, Distribution and Excretion

Absorption
Healthy adult male volunteers (n=9) given a single intravenous infusion of 500 mg, 1 g, and 2 g of cefepime had a corresponding Cmax of 39.1, 81.7 and 163.9 μg/mL, and a corresponding AUC of 70.8, 148.5 and 284.8 h⋅μg/mL. On the other hand, healthy adult male volunteers given a single intramuscular infusion of 500 mg, 1 g, and 2 g of cefepime had a corresponding Cmax of 13.9, 29.6 and 57.5 μg/mL, a corresponding AUC of 60, 137 and 262 h⋅μg/mL, and a corresponding Tmax of 1.4, 1.6 and 1.5 h. A study in healthy adult male volunteers (n=7) that received clinically relevant doses for 9 days suggests that cefepime is not accumulated in the body. Between 250 mg and 2 g, cefepime follows a linear pharmacokinetic model, and the absolute bioavailability of cefepime in pediatric patients (n=8) given an intramuscular dose of 50 mg/kg was 82.3%.
Route of Elimination
Cefepime is mainly eliminated by the kidneys, and most of it is excreted unchanged. Approximately 85% of cefepime administered to normal subjects is excreted unchanged in urine. Less than 1% of the administered dose is recovered from urine as N-methylpyrrolidine (NMP), 6.8% as NMP-N-oxide, and 2.5% as an epimer. Dosage adjustments are required in patients with renal dysfunction or those undergoing hemodialysis, due to the importance of renal excretion in eliminating cefepime.
Volume of Distribution
The average steady-state volume of distribution of cefepime is 18.0 L. In pediatric patients, the average steady-state volume of distribution is 0.3 L/kg.
Clearance
Cefepime has a total body clearance of 120 mL/min in healthy volunteers, and in pediatric patients, the average total body clearance is 3.3 mL/min/kg. In geriatric patients (65 years of age and older) and patients with abnormal renal function, cefepime total body clearance decreases proportionally with creatinine clearance.

7.6 Metabolism / Metabolites

Less than 1% of cefepime is metabolized in the liver. Cefepime is metabolized to N-methylpyrrolidine (NMP), which then undergoes rapid oxidation to form NMP-N-oxide, a more stable compound. NMP-N-oxide is the predominant metabolite of cefepime, while NMP and the 7-epimer of cefepime are minor byproducts. It has been suggested that flavin-containing mixed-function oxygenase mediates the oxidation of NMP to NMP-N-oxide.

7.7 Biological Half-Life

Healthy adult male volunteers (n=9) given cefepime had an average half-life of 2 hours. In patients requiring hemodialysis, the average half-life was 13.5 hours, and in patients requiring continuous peritoneal dialysis, the average half-life was 19 hours.

7.8 Mechanism of Action

Cefepime is a bactericidal cephalosporin with a mode of action similar to other beta-lactam antibiotics. Cefepime disrupts bacterial cell walls by binding and inhibiting transpeptidases known as penicillin-binding proteins (PBPs), which are enzymes involved in the final stages of peptidoglycan layer synthesis. This results in the lysis and death of susceptible microorganisms. Cefepime has a broad spectrum of _in vitro_ activity that includes both Gram-positive and Gram-negative bacteria. Cefepime has affinity for PBP-3 and PBP-1 in _Escherichia coli_ and _Pseudomonas aeruginosa_, as well as PBP-2 in _E. coli_ and _Enterobacter cloacae_.

7.9 Human Metabolite Information

7.9.1 Cellular Locations

Membrane

8 Use and Manufacturing

8.1 Uses

Use (kg; approx.) in Germany (2009): >100

Use (kg; exact) in Germany (2009): 102

Use (kg) in USA (2002): 5730

Consumption (g per capita; approx.) in Germany (2009): 0.00122

Consumption (g per capita; exact) in Germany (2009): 0.00124

Consumption (g per capita) in the USA (2002): 0.0203

Excretion rate: 0.85

Calculated removal (%): 22

9 Safety and Hazards

9.1 Hazards Identification

9.1.1 GHS Classification

Pictogram(s)
Health Hazard
Signal
Danger
GHS Hazard Statements

H317 (100%): May cause an allergic skin reaction [Warning Sensitization, Skin]

H334 (100%): May cause allergy or asthma symptoms or breathing difficulties if inhaled [Danger Sensitization, respiratory]

Precautionary Statement Codes

P233, P260, P261, P271, P272, P280, P284, P302+P352, P304+P340, P321, P333+P317, P342+P316, P362+P364, P403, and P501

(The corresponding statement to each P-code can be found at the GHS Classification page.)

ECHA C&L Notifications Summary

Aggregated GHS information provided per 4 reports by companies from 1 notifications to the ECHA C&L Inventory. Each notification may be associated with multiple companies.

Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from companies that provide hazard codes. Only hazard codes with percentage values above 10% are shown.

9.1.2 Hazard Classes and Categories

Skin Sens. 1 (100%)

Resp. Sens. 1 (100%)

10 Toxicity

10.1 Toxicological Information

10.1.1 Drug Induced Liver Injury

Compound
cefepime
DILI Annotation
Less-DILI-Concern
Severity Grade
3
Label Section
Adverse reactions
References

M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007

M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015

10.1.2 Effects During Pregnancy and Lactation

◉ Summary of Use during Lactation

Although no published information is available on the use of cefepime during breastfeeding, the levels in breastmilk appear to be low and cephalosporins are generally not be expected to cause serious adverse effects in breastfed infants. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with cephalosporins, but these effects have not been adequately evaluated. Cefepime is acceptable in nursing mothers. The combination of cefepime and enmetazobactam has not been studied in humans during breasteeding, but the same adverse effects should apply.

◉ Effects in Breastfed Infants

Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk

Relevant published information was not found as of the revision date.

10.1.3 Protein Binding

The serum protein binding of cefepime is approximately 20%, independent of its concentration in serum.

11 Associated Disorders and Diseases

12 Literature

12.1 Consolidated References

12.2 NLM Curated PubMed Citations

12.3 Springer Nature References

12.4 Chemical Co-Occurrences in Literature

12.5 Chemical-Gene Co-Occurrences in Literature

12.6 Chemical-Disease Co-Occurrences in Literature

13 Patents

13.1 Depositor-Supplied Patent Identifiers

13.2 WIPO PATENTSCOPE

13.3 Chemical Co-Occurrences in Patents

13.4 Chemical-Disease Co-Occurrences in Patents

13.5 Chemical-Gene Co-Occurrences in Patents

14 Interactions and Pathways

14.1 Chemical-Target Interactions

14.2 Drug-Drug Interactions

14.3 Pathways

15 Biological Test Results

15.1 BioAssay Results

16 Taxonomy

The LOTUS Initiative for Open Natural Products Research: frozen dataset union wikidata (with metadata) | DOI:10.5281/zenodo.5794106

17 Classification

17.1 MeSH Tree

17.2 NCI Thesaurus Tree

17.3 ChEBI Ontology

17.4 KEGG: ATC

17.5 KEGG: Drug Groups

17.6 KEGG : Antimicrobials

17.7 WHO ATC Classification System

17.8 FDA Pharm Classes

17.9 ChemIDplus

17.10 ChEMBL Target Tree

17.11 UN GHS Classification

17.12 NORMAN Suspect List Exchange Classification

17.13 EPA DSSTox Classification

17.14 LOTUS Tree

18 Information Sources

  1. CAS Common Chemistry
    LICENSE
    The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
    https://creativecommons.org/licenses/by-nc/4.0/
  2. ChemIDplus
    ChemIDplus Chemical Information Classification
    https://pubchem.ncbi.nlm.nih.gov/source/ChemIDplus
  3. DrugBank
    LICENSE
    Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
    https://www.drugbank.ca/legal/terms_of_use
  4. EPA DSSTox
    CompTox Chemicals Dashboard Chemical Lists
    https://comptox.epa.gov/dashboard/chemical-lists/
  5. European Chemicals Agency (ECHA)
    LICENSE
    Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
    https://echa.europa.eu/web/guest/legal-notice
    1-[[(6R,7R)-7-[[(2Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetyl]amino]-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl]methyl]-1-methyl-pyrrolidinium, inner salt
    https://echa.europa.eu/substance-information/-/substanceinfo/100.171.025
    1-[[(6R,7R)-7-[[(2Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetyl]amino]-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl]methyl]-1-methyl-pyrrolidinium, inner salt (EC: 643-019-5)
    https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/175937
  6. FDA Global Substance Registration System (GSRS)
    LICENSE
    Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
    https://www.fda.gov/about-fda/about-website/website-policies#linking
  7. Human Metabolome Database (HMDB)
    LICENSE
    HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.
    http://www.hmdb.ca/citing
  8. ChEBI
  9. FDA Pharm Classes
    LICENSE
    Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
    https://www.fda.gov/about-fda/about-website/website-policies#linking
  10. LOTUS - the natural products occurrence database
    LICENSE
    The code for LOTUS is released under the GNU General Public License v3.0.
    https://lotus.nprod.net/
  11. NCI Thesaurus (NCIt)
    LICENSE
    Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
    https://www.cancer.gov/policies/copyright-reuse
  12. Open Targets
    LICENSE
    Datasets generated by the Open Targets Platform are freely available for download.
    https://platform-docs.opentargets.org/licence
  13. ChEMBL
    LICENSE
    Access to the web interface of ChEMBL is made under the EBI's Terms of Use (http://www.ebi.ac.uk/Information/termsofuse.html). The ChEMBL data is made available on a Creative Commons Attribution-Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by-sa/3.0/).
    http://www.ebi.ac.uk/Information/termsofuse.html
  14. ClinicalTrials.gov
    LICENSE
    The ClinicalTrials.gov data carry an international copyright outside the United States and its Territories or Possessions. Some ClinicalTrials.gov data may be subject to the copyright of third parties; you should consult these entities for any additional terms of use.
    https://clinicaltrials.gov/ct2/about-site/terms-conditions#Use
  15. Comparative Toxicogenomics Database (CTD)
    LICENSE
    It is to be used only for research and educational purposes. Any reproduction or use for commercial purpose is prohibited without the prior express written permission of NC State University.
    http://ctdbase.org/about/legal.jsp
  16. Drug Gene Interaction database (DGIdb)
    LICENSE
    The data used in DGIdb is all open access and where possible made available as raw data dumps in the downloads section.
    http://www.dgidb.org/downloads
  17. Therapeutic Target Database (TTD)
  18. DailyMed
  19. Drug Induced Liver Injury Rank (DILIrank) Dataset
    LICENSE
    Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
    https://www.fda.gov/about-fda/about-website/website-policies#linking
  20. Drugs and Lactation Database (LactMed)
  21. Drugs@FDA
    LICENSE
    Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
    https://www.fda.gov/about-fda/about-website/website-policies#linking
  22. EU Clinical Trials Register
  23. National Drug Code (NDC) Directory
    LICENSE
    Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
    https://www.fda.gov/about-fda/about-website/website-policies#linking
  24. KEGG
    LICENSE
    Academic users may freely use the KEGG website. Non-academic use of KEGG generally requires a commercial license
    https://www.kegg.jp/kegg/legal.html
    Anatomical Therapeutic Chemical (ATC) classification
    http://www.genome.jp/kegg-bin/get_htext?br08303.keg
  25. Metabolomics Workbench
  26. NIPH Clinical Trials Search of Japan
  27. NLM RxNorm Terminology
    LICENSE
    The RxNorm Terminology is created by the National Library of Medicine (NLM) and is in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from NLM. Credit to the U.S. National Library of Medicine as the source is appreciated but not required. The full RxNorm dataset requires a free license.
    https://www.nlm.nih.gov/research/umls/rxnorm/docs/termsofservice.html
  28. NORMAN Suspect List Exchange
    LICENSE
    Data: CC-BY 4.0; Code (hosted by ECI, LCSB): Artistic-2.0
    https://creativecommons.org/licenses/by/4.0/
    Cefepime
    NORMAN Suspect List Exchange Classification
    https://www.norman-network.com/nds/SLE/
  29. PharmGKB
    LICENSE
    PharmGKB data are subject to the Creative Commons Attribution-ShareALike 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
    https://www.pharmgkb.org/page/policies
  30. Springer Nature
  31. WHO Anatomical Therapeutic Chemical (ATC) Classification
    LICENSE
    Use of all or parts of the material requires reference to the WHO Collaborating Centre for Drug Statistics Methodology. Copying and distribution for commercial purposes is not allowed. Changing or manipulating the material is not allowed.
    https://www.whocc.no/copyright_disclaimer/
  32. Wikidata
  33. Wikipedia
  34. Medical Subject Headings (MeSH)
    LICENSE
    Works produced by the U.S. government are not subject to copyright protection in the United States. Any such works found on National Library of Medicine (NLM) Web sites may be freely used or reproduced without permission in the U.S.
    https://www.nlm.nih.gov/copyright.html
  35. PubChem
  36. GHS Classification (UNECE)
  37. PATENTSCOPE (WIPO)
  38. NCBI
CONTENTS