Bookmark and Share
BioAssay: AID 652113

Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based parallel artificial membrane permeability (PAMPA) assay

Name: Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based parallel artificial membrane permeability (PAMPA) assay. ..more
_
   
 Tested Compounds
 Tested Compounds
All(1)
 
 
Active(1)
 
 
 Tested Substances
 Tested Substances
All(1)
 
 
Active(1)
 
 
 Related BioAssays
 Related BioAssays
AID: 652113
Data Source: The Scripps Research Institute Molecular Screening Center (PAMPA_LCMS_PK)
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2013-03-15
Hold-until Date: 2013-10-21
Modify Date: 2013-10-21

Data Table ( Complete ):           View Active Data    View All Data
BioActive Compound: 1
Related Experiments
Show more
AIDNameTypeComment
652031Maybridge screen to identify antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assayScreeningdepositor-specified cross reference: Maybridge screen (OPRK1 inhibitors in singlicate)
652032Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assayConfirmatorydepositor-specified cross reference: Late-stage dose response (OPRK1 antagonists in quadruplicate)
652033Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRD1 antagonists in quadruplicate)
652034Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRM1 antagonists in quadruplicate)
652045Summary of the probe development efforts to identify antagonists of the kappa 1 (OPRK1) opioid receptorSummarydepositor-specified cross reference: Summary (OPRK1 antagonists)
652075Late-stage results from the probe development effort to identify antagonists of OPRK1: radiometric-based biochemical hERG counterscreen assayOthersame project related to Summary assay
652076Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical cytochrome P450 inhibition assayOthersame project related to Summary assay
652077Late-stage fluorescence-based cell-based dose response assay for antagonists of kappa opioid receptor 1 (OPRK1)Confirmatorysame project related to Summary assay
652078Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based pharmacokinetic plasma protein binding assayOthersame project related to Summary assay
652079Late-stage counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based dose response assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)Confirmatorysame project related to Summary assay
652080Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652081Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652082Fluorescence-based cell-based confirmation assay for antagonists of kappa opioid receptor 1 (OPRK1)Othersame project related to Summary assay
652083Late-stage results from the probe development effort to identify antagonists of OPRK1: CEREP radiometric-based biochemical counterscreen panel assayOthersame project related to Summary assay
652084Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assay, Set 2.Confirmatorysame project related to Summary assay
652085Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based in vivo plasma and brain levelsOthersame project related to Summary assay
652086Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of test compoundsConfirmatorysame project related to Summary assay
652087Counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)Othersame project related to Summary assay
652088Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical hepatic microsome stability assayOthersame project related to Summary assay
652108Late-stage results from the probe development effort to identify antagonists of OPRK1: In vivo tail flick assayOthersame project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Lakshmi A. Devi, Mount Sinai School of Medicine
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: R03NS053751
Grant Proposal PI: Lakshmi A. Devi, Mount Sinai School of Medicine
External Assay ID: PAMPA_LCMS_PK

Name: Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based parallel artificial membrane permeability (PAMPA) assay.

Description:

Potent and selective OPRK antagonists will be useful for studying the mechanisms involved in OPRK-mediated analgesia and may have therapeutic value as novel analgesics with an improved side effect profile to currently available drugs. Studies have identified a role for dynorphin and OPRK stimulation in neuropathic pain (1). The dynorphins act as endogenous agonists at the opioid receptors, including OPRK (2), and the increased dynorphin expression in neuropathic pain also leads to a sustained activation of OPRK (1, 3). The mechanisms and neural circuits in OPRK-mediated analgesia are active areas of study; it is hoped those studies will assist in the development of novel analgesics that bypass OPRK-mediated depression (4-5). A role for dynorphin/OPRK in modulating drug addiction has been proposed (for review, see (6-7)). The function of dynorphin/OPRK systems in addiction appears to be diverse, and may modulate drug-seeking behavior depending on factors such as drug history, pattern of intake, and stress (for review, see (6)). The availability of potent and selective OPRK ligands may help unravel these mechanisms, as well as prove to be of therapeutic utility. Evidence from preclinical studies indicates that the dynorphin/OPRK system may be dysregulated in affective psychiatric disorders (for review, see (6, 8)). However, solid evidence from clinical studies is lacking. There is increasing evidence for a potential involvement of dynorphin/OPRK in schizophrenia; OPRK agonists appear to induce symptoms in humans and animals that are present in schizophrenia (8-10). Thus, the availability of new research tools such as potent and selective OPRK antagonists will facilitate understanding the physiological and pathophysiological mechanisms of dynorphin/OPRK systems and their roles in psychiatric disease in humans.

References:

1. Xu, M., et al., Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci, 2004. 24(19): p. 4576-84.
2. Chavkin, C., I.F. James, and A. Goldstein, Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982. 215(4531): p. 413-5.
3. Xu, M., et al., Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci, 2007. 27(10): p. 2570-81.
4. Al-Hasani, R. and M.R. Bruchas, Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011. 115(6): p. 1363-81.
5. Muschamp, J.W., A. Van't Veer, and W.A. Carlezon, Jr., Tracking down the molecular substrates of stress: new roles for p38alpha MAPK and kappa-opioid receptors. Neuron, 2011. 71(3): p. 383-5.
6. Tejeda, H.A., T.S. Shippenberg, and R. Henriksson, The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci, 2012. 69(6): p. 857-96.
7. Yoo, J.H., I. Kitchen, and A. Bailey, The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol, 2012. 166(7): p. 1993-2014.
8. Schwarzer, C., 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther, 2009. 123(3): p. 353-70.
9. Bortolato, M. and M.V. Solbrig, The price of seizure control: dynorphins in interictal and postictal psychosis. Psychiatry Res, 2007. 151(1-2): p. 139-43.
10. Sheffler, D.J. and B.L. Roth, Salvinorin A: the "magic mint" hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci, 2003. 24(3): p. 107-9.

Keywords:

OPRK1, kappa, opioid, receptor, mouse, pharmacokinetics, PK assay, PAMPA, Parallel Artificial Membrane Permeability Assay, LCMS, LC-MS/MS, antagonist, inhibitor, inhibit, pain, analgesic, neuropathic pain, drug addiction, addiction, Scripps, Scripps DMPK Laboratory, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this assay is to assess the permeability of a lead OPRK antagonist test compound using a commercial Parallel Artificial Membrane Permeability Assay (PAMPA) kit.

Protocol Summary:

An assessment of permeability was done using a commercial PAMPA kit. Compound was evaluated over a range of concentrations in 300 uL of PBS containing the compound in a well of the receiver plate, which is coupled to the bottom donor plate. The plates were allowed to incubate at room temperature. After 5 hours, aliquots were taken from the donor and receiver plates and the concentration of drug was determined. Propanolol and antiprine were used as positive controls; BHF177 and BLK998 were used as negative controls. Compound permeability was calculated.

PubChem Activity Outcome and Score:

Compounds with greater than 100 nm/sec permeability were considered active; compounds with less than 100 nm/sec permeability were considered inactive.

The PubChem Activity Score is assigned a value of 100 for active compounds, and 0 for inactive compounds.

The PubChem Activity Score range for active compounds is 100-100. There are no inactive compounds.

List of Reagents:

PAMPA (Parallel Artificial Membrane Permeability Assay) kit (BD Biosciences, part #353015).
Other reagents were provided by by the DMPK Laboratory at The Scripps Research Institute in Florida.
Comment
This assay was performed by the DMPK Laboratory at The Scripps Research Institute in Florida with powder samples of synthesized compound.
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1Permeability (nmol/s)The value of permeability of compound, expressed as nanomoles per second.Float
Additional Information
Grant Number: R03NS053751

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: