Bookmark and Share
BioAssay: AID 652087

Counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)

Name: Counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1). ..more
_
   
 Tested Compounds
 Tested Compounds
All(67)
 
 
Active(29)
 
 
Inactive(38)
 
 
 Tested Substances
 Tested Substances
All(67)
 
 
Active(29)
 
 
Inactive(38)
 
 
AID: 652087
Data Source: The Scripps Research Institute Molecular Screening Center (S1P1_ANT_FRET_384_3X%INH)
Depositor Category: NIH Molecular Libraries Probe Production Network
Deposit Date: 2013-03-06

Data Table ( Complete ):           View Active Data    View All Data
Target
BioActive Compounds: 29
Related Experiments
Show more
AIDNameTypeComment
652031Maybridge screen to identify antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assayScreeningdepositor-specified cross reference: Maybridge screen (OPRK1 inhibitors in singlicate)
652032Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assayConfirmatorydepositor-specified cross reference: Late-stage dose response (OPRK1 antagonists in quadruplicate)
652033Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRD1 antagonists in quadruplicate)
652034Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRM1 antagonists in quadruplicate)
652045Summary of the probe development efforts to identify antagonists of the kappa 1 (OPRK1) opioid receptorSummarydepositor-specified cross reference: Summary (OPRK1 antagonists)
652108Late-stage results from the probe development effort to identify antagonists of OPRK1: In vivo tail flick assayOtherdepositor-specified cross reference
652075Late-stage results from the probe development effort to identify antagonists of OPRK1: radiometric-based biochemical hERG counterscreen assayOthersame project related to Summary assay
652076Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical cytochrome P450 inhibition assayOthersame project related to Summary assay
652077Late-stage fluorescence-based cell-based dose response assay for antagonists of kappa opioid receptor 1 (OPRK1)Confirmatorysame project related to Summary assay
652078Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based pharmacokinetic plasma protein binding assayOthersame project related to Summary assay
652079Late-stage counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based dose response assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)Confirmatorysame project related to Summary assay
652080Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652081Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652082Fluorescence-based cell-based confirmation assay for antagonists of kappa opioid receptor 1 (OPRK1)Othersame project related to Summary assay
652083Late-stage results from the probe development effort to identify antagonists of OPRK1: CEREP radiometric-based biochemical counterscreen panel assayOthersame project related to Summary assay
652084Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assay, Set 2.Confirmatorysame project related to Summary assay
652085Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based in vivo plasma and brain levelsOthersame project related to Summary assay
652086Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of test compoundsConfirmatorysame project related to Summary assay
652088Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical hepatic microsome stability assayOthersame project related to Summary assay
652113Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based parallel artificial membrane permeability (PAMPA) assayOthersame project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Lakshmi A. Devi, Mount Sinai School of Medicine
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: R03NS053751
Grant Proposal PI: Lakshmi A. Devi, Mount Sinai School of Medicine
External Assay ID: S1P1_ANT_FRET_384_3X%INH

Name: Counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1).

Description:

Potent and selective OPRK antagonists will be useful for studying the mechanisms involved in OPRK-mediated analgesia and may have therapeutic value as novel analgesics with an improved side effect profile to currently available drugs. Studies have identified a role for dynorphin and OPRK stimulation in neuropathic pain (1). The dynorphins act as endogenous agonists at the opioid receptors, including OPRK (2), and the increased dynorphin expression in neuropathic pain also leads to a sustained activation of OPRK (1, 3). The mechanisms and neural circuits in OPRK-mediated analgesia are active areas of study; it is hoped those studies will assist in the development of novel analgesics that bypass OPRK-mediated depression (4-5). A role for dynorphin/OPRK in modulating drug addiction has been proposed (for review, see (6-7)). The function of dynorphin/OPRK systems in addiction appears to be diverse, and may modulate drug-seeking behavior depending on factors such as drug history, pattern of intake, and stress (for review, see (6)). The availability of potent and selective OPRK ligands may help unravel these mechanisms, as well as prove to be of therapeutic utility. Evidence from preclinical studies indicates that the dynorphin/OPRK system may be dysregulated in affective psychiatric disorders (for review, see (6, 8)). However, solid evidence from clinical studies is lacking. There is increasing evidence for a potential involvement of dynorphin/OPRK in schizophrenia; OPRK agonists appear to induce symptoms in humans and animals that are present in schizophrenia (8-10). Thus, the availability of new research tools such as potent and selective OPRK antagonists will facilitate understanding the physiological and pathophysiological mechanisms of dynorphin/OPRK systems and their roles in psychiatric disease in humans.

References:

1. Xu, M., et al., Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci, 2004. 24(19): p. 4576-84.
2. Chavkin, C., I.F. James, and A. Goldstein, Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982. 215(4531): p. 413-5.
3. Xu, M., et al., Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci, 2007. 27(10): p. 2570-81.
4. Al-Hasani, R. and M.R. Bruchas, Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011. 115(6): p. 1363-81.
5. Muschamp, J.W., A. Van't Veer, and W.A. Carlezon, Jr., Tracking down the molecular substrates of stress: new roles for p38alpha MAPK and kappa-opioid receptors. Neuron, 2011. 71(3): p. 383-5.
6. Tejeda, H.A., T.S. Shippenberg, and R. Henriksson, The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci, 2012. 69(6): p. 857-96.
7. Yoo, J.H., I. Kitchen, and A. Bailey, The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol, 2012. 166(7): p. 1993-2014.
8. Schwarzer, C., 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther, 2009. 123(3): p. 353-70.
9. Bortolato, M. and M.V. Solbrig, The price of seizure control: dynorphins in interictal and postictal psychosis. Psychiatry Res, 2007. 151(1-2): p. 139-43.
10. Sheffler, D.J. and B.L. Roth, Salvinorin A: the "magic mint" hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci, 2003. 24(3): p. 107-9.

Keywords:

Maybridge Library, Maybridge, OPRK1, kappa, opioid, receptor, GPCR, Sphingosine-1-phosphate receptor 1, S1P1, antagonist, inhibitor, inhibit, Tango, FRET, GAL4-VP16, beta-arrestin, beta-lactamase, BLA, reporter gene, pain, analgesic, dynorphin, neuropathic pain, drug addiction, addiction, 384, Scripps, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:
The purpose of this assay is to determine whether compounds from the Maybridge Library that act as antagonists of OPRK1 are nonselective due to inhibition of S1P1. The Tango EDG-1-bla U2OS cells express S1P1 (EDG1) linked to a GAL4-VP16 transcription factor via a TEV protease site. The cells also express a beta-arrestin/TEV protease fusion protein and a beta-lactamase (BLA) reporter gene under the control of a UAS response element. Stimulation of the S1P1 receptor by agonist causes migration of the fusion protein to the GPCR, and through proteolysis liberates GAL4-VP16 from the receptor. The liberated VP16-GAL4 migrates to the nucleus, where it induces transcription of the BLA gene. BLA expression is monitored by measuring fluorescence resonance energy transfer (FRET) of a cleavable, fluorogenic, cell-permeable BLA substrate. As designed, test compounds that act as S1P1 antagonists will inhibit S1P1 activation and migration of the fusion protein, thus preventing proteolysis of GAL4-VP16 and BLA transcription, leading to no increase in well FRET. Compounds were tested in triplicate at a final nominal concentration of 9 uM.
Protocol Summary:
U2OS cells were cultured in T-175 sq cm flasks at 37 C and 95% relative humidity (RH). The growth media consisted of McCoy's 5A Medium supplemented with 10% v/v dialyzed fetal bovine serum, 0.1 mM NEAA, 25 mM HEPES (pH 7.3), 1 mM sodium pyruvate, 100 U/mL penicillin-streptomycin-neomycin, 200 ug/mL Zeocin, 50 ug/mL Hygromycin, and 100 ug/mL Geneticin. Prior to the start of the assay, cells were suspended at a concentration of 1,000,000/mL in Assay Medium (Freestyle Expression Medium without supplements). The assay was started by dispensing 10 uL of cell suspension to each well in 384-well plates, followed by overnight incubation at 37 C in 5% CO2 and 95% relative humidity. The next day, 50 nL of test compound in DMSO was added to sample wells, and DMSO alone (0.5 % final concentration) was added to control wells. Next, S1P prepared in 2% BSA (0.22 uM final nominal EC80 concentration) was added to the appropriate wells. Plates were then incubated at 37 C in 5% CO2 for 4 hours. After the incubation, 2.2 uL/well of the LiveBLAzer FRET substrate mixture, prepared according to the manufacturer's protocol and containing 10 mM Probenicid, was added to all wells. After 2 hours of incubation at room temperature in the dark, plates were read on the EnVision plate reader (PerkinElmer Lifesciences, Turku, Finland) at an excitation wavelength of 405 nm and emission wavelengths of 460 nm and 535 nm.
Percent Inhibition was calculated from the median ratio as follows:
%_Inhibition = 1 - ( ( FI_Test_Compound - Median_FI_HighControl ) / ( Median_FI_Low_Control - Median_FI_High_Control ) ) * 100
Where:
FI is defined as Fluorescence Intensity at 460 nm/Fluorescence Intensity at 530 nm.
Test_Compound is defined as wells containing test compound and S1P
Low_Control is defined as wells containing S1P
High Control (100% inhibition) is defined as wells containing DMSO
PubChem Activity Outcome and Score:
Compounds that exhibited greater than 30% inhibition were declared to be active; compounds that exhibited less than or equal to 30% inhibition were declared to be inactive.
The reported PubChem Activity Score has been normalized to 100% observed inhibition. Negative % inhibition values are reported as activity score zero.
The PubChem Activity Score range for active compounds is 100-22, and for inactive compounds 19-0.
List of Reagents:
Tango EDG-1-bla U2OS cells (Invitrogen, part K1622)
GeneBLAzer FRET B/G Loading Kit (CCF4-AM) (Invitrogen, part K1025)
Probenecid (Sigma, part P8761)
Freestyle Expression Medium (Assay media; Invitrogen, part 12338-018)
McCoy's 5A Medium (modified) (1X) (Invitrogen, 16600-082)
Fetal Bovine Serum, dialyzed (Invitrogen, part 26400-036)
NEAA (Invitrogen, part 1114-050)
Penicillin-Streptomycin-Neomycin antibiotic mix (Invitrogen, part 15140-122)
Sodium Pyruvate (Invitrogen, part 11360-070)
PBS without calcium or magnesium (Invitrogen, part 14190-136)
HEPES (Invitrogen, part 15630-080)
Trypsin/EDTA (Invitrogen, part 25300-054)
S1P (Avanti Polar Lipids, part 860492P)
Fatty Acid Free BSA (Calbiochem, part NC9734015)
Zeocin (Invitrogen, part R250-01)
Hygromycin (Invitrogen, part 10687-010)
Geneticin (Invitrogen, part 10131-027)
384-well plates (Greiner, part 788092)
T175 tissue culture flasks (Corning, part 431080)
Comment
This assay was performed by the SRIMSC with liquid samples of test compounds contained in the Maybridge Library.
Categorized Comment - additional comments and annotations
From PubChem:
Assay Format: Cell-based
Assay Cell Type: U-2 OS
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1Average Inhibition at 9 uM (9μM**)Average value of % Inhibition at 9 uM compound concentration.Float%
2Standard DeviationStandard deviation of replicate percent inhibition values at 9 uM compound concentrationFloat
3Inhibition at 9 uM [1] (9μM**)Value of % Inhibition at 9 uM compound concentration; replicate 1.Float%
4Inhibition at 9 uM [2] (9μM**)Value of % Inhibition at 9 uM compound concentration; replicate 2.Float%
5Inhibition at 9 uM [3] (9μM**)Value of % Inhibition at 9 uM compound concentration; replicate 3.Float%

** Test Concentration.
Additional Information
Grant Number: R03NS053751

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: