Bookmark and Share
BioAssay: AID 652086

Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of test compounds

Name: Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of test compounds. ..more
_
   
 Tested Compounds
 Tested Compounds
All(1)
 
 
Inactive(1)
 
 
 Tested Substances
 Tested Substances
All(1)
 
 
Inactive(1)
 
 
 Related BioAssays
 Related BioAssays
AID: 652086
Data Source: The Scripps Research Institute Molecular Screening Center (U2OSCTYOX_INH_LUMI_384_4XEC50_OPRK1)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2013-03-06
Hold-until Date: 2013-10-21
Modify Date: 2013-10-21

Data Table ( Complete ):           View All Data
Tested Compound:
Related Experiments
Show more
AIDNameTypeComment
652031Maybridge screen to identify antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assayScreeningdepositor-specified cross reference: Maybridge screen (OPRK1 inhibitors in singlicate)
652032Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assayConfirmatorydepositor-specified cross reference: Late-stage dose response (OPRK1 antagonists in quadruplicate)
652033Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRD1 antagonists in quadruplicate)
652034Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreenConfirmatorydepositor-specified cross reference: Late-stage dose response counterscreen (OPRM1 antagonists in quadruplicate)
652045Summary of the probe development efforts to identify antagonists of the kappa 1 (OPRK1) opioid receptorSummarydepositor-specified cross reference: Summary (OPRK1 antagonists)
652108Late-stage results from the probe development effort to identify antagonists of OPRK1: In vivo tail flick assayOtherdepositor-specified cross reference
652075Late-stage results from the probe development effort to identify antagonists of OPRK1: radiometric-based biochemical hERG counterscreen assayOthersame project related to Summary assay
652076Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical cytochrome P450 inhibition assayOthersame project related to Summary assay
652077Late-stage fluorescence-based cell-based dose response assay for antagonists of kappa opioid receptor 1 (OPRK1)Confirmatorysame project related to Summary assay
652078Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based pharmacokinetic plasma protein binding assayOthersame project related to Summary assay
652079Late-stage counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based dose response assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)Confirmatorysame project related to Summary assay
652080Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response OPRD1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652081Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response OPRM1 counterscreen, Set 2Confirmatorysame project related to Summary assay
652082Fluorescence-based cell-based confirmation assay for antagonists of kappa opioid receptor 1 (OPRK1)Othersame project related to Summary assay
652083Late-stage results from the probe development effort to identify antagonists of OPRK1: CEREP radiometric-based biochemical counterscreen panel assayOthersame project related to Summary assay
652084Late-stage results from the probe development effort to identify antagonists of OPRK1: fluorescence-based cell-based dose response assay, Set 2.Confirmatorysame project related to Summary assay
652085Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based in vivo plasma and brain levelsOthersame project related to Summary assay
652087Counterscreen for antagonists of kappa opioid receptor 1 (OPRK1): fluorescence-based cell-based assay to identify antagonists of Sphingosine 1-Phosphate Receptor 1 (S1P1)Othersame project related to Summary assay
652088Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based biochemical hepatic microsome stability assayOthersame project related to Summary assay
652113Late-stage results from the probe development effort to identify antagonists of OPRK1: LCMS-based parallel artificial membrane permeability (PAMPA) assayOthersame project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Lakshmi A. Devi, Mount Sinai School of Medicine
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: R03NS053751
Grant Proposal PI: Lakshmi A. Devi, Mount Sinai School of Medicine
External Assay ID: U2OSCTYOX_INH_LUMI_384_4XEC50_OPRK1

Name: Late-stage results from the probe development effort to identify antagonists of OPRK1: luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of test compounds.

Description:

Potent and selective OPRK antagonists will be useful for studying the mechanisms involved in OPRK-mediated analgesia and may have therapeutic value as novel analgesics with an improved side effect profile to currently available drugs. Studies have identified a role for dynorphin and OPRK stimulation in neuropathic pain (1). The dynorphins act as endogenous agonists at the opioid receptors, including OPRK (2), and the increased dynorphin expression in neuropathic pain also leads to a sustained activation of OPRK (1, 3). The mechanisms and neural circuits in OPRK-mediated analgesia are active areas of study; it is hoped those studies will assist in the development of novel analgesics that bypass OPRK-mediated depression (4-5). A role for dynorphin/OPRK in modulating drug addiction has been proposed (for review, see (6-7)). The function of dynorphin/OPRK systems in addiction appears to be diverse, and may modulate drug-seeking behavior depending on factors such as drug history, pattern of intake, and stress (for review, see (6)). The availability of potent and selective OPRK ligands may help unravel these mechanisms, as well as prove to be of therapeutic utility. Evidence from preclinical studies indicates that the dynorphin/OPRK system may be dysregulated in affective psychiatric disorders (for review, see (6, 8)). However, solid evidence from clinical studies is lacking. There is increasing evidence for a potential involvement of dynorphin/OPRK in schizophrenia; OPRK agonists appear to induce symptoms in humans and animals that are present in schizophrenia (8-10). Thus, the availability of new research tools such as potent and selective OPRK antagonists will facilitate understanding the physiological and pathophysiological mechanisms of dynorphin/OPRK systems and their roles in psychiatric disease in humans.

References:

1. Xu, M., et al., Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci, 2004. 24(19): p. 4576-84.
2. Chavkin, C., I.F. James, and A. Goldstein, Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982. 215(4531): p. 413-5.
3. Xu, M., et al., Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci, 2007. 27(10): p. 2570-81.
4. Al-Hasani, R. and M.R. Bruchas, Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011. 115(6): p. 1363-81.
5. Muschamp, J.W., A. Van't Veer, and W.A. Carlezon, Jr., Tracking down the molecular substrates of stress: new roles for p38alpha MAPK and kappa-opioid receptors. Neuron, 2011. 71(3): p. 383-5.
6. Tejeda, H.A., T.S. Shippenberg, and R. Henriksson, The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci, 2012. 69(6): p. 857-96.
7. Yoo, J.H., I. Kitchen, and A. Bailey, The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol, 2012. 166(7): p. 1993-2014.
8. Schwarzer, C., 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther, 2009. 123(3): p. 353-70.
9. Bortolato, M. and M.V. Solbrig, The price of seizure control: dynorphins in interictal and postictal psychosis. Psychiatry Res, 2007. 151(1-2): p. 139-43.
10. Sheffler, D.J. and B.L. Roth, Salvinorin A: the "magic mint" hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci, 2003. 24(3): p. 107-9.

Keywords:

Late stage, late stage AID, OPRK1, kappa, opioid, receptor, GPCR, Tango, U2OS, luminescence, cytotoxicity, CellTitre-Glo, CC50, antagonist, inhibitor, inhibit, pain, analgesic, dynorphin, neuropathic pain, drug addiction, addiction, 384, Scripps, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this assay is to determine cytotoxicity of a powder compound that inhibits the kappa (OPRK1) opioid receptor. In this assay, U2OS cells are incubated with test compound, followed by determination of cell viability. The assay utilizes the CellTiter-Glo luminescent reagent to measure intracellular ATP in viable cells. Luciferase present in the reagent catalyzes the oxidation of beetle luciferin to oxyluciferin and light in the presence of cellular ATP. Well luminescence is directly proportional to ATP levels and cell viability. As designed, compounds that reduce cell viability will reduce ATP levels, luciferin oxidation and light production, resulting in decreased well luminescence. Compounds were tested in quadruplicate in a 12-point 1:3 dilution series starting at a nominal test concentration of 10 uM.

Protocol Summary:

This assay was started by dispensing Tangotrade mark OPRK1-bla U20S cells in McCoy's 5A medium plus 10% FBS, penicillin 100 U/mL and streptomycin 100 ug/mL (20 uL, 4 x 10E3 cells/well) into the wells of a 384-well plate. Twelve 1:3 serial dilutions of compound (100 uM in growth media) were made. 5 uL of diluted compound or media were added to wells. The plate was incubated at 37 C in a humidified incubator for 24 hours, then equilibrated to room temperature for 30 minutes. 25 uL CellTitre-Glo reagent was added to each well, followed by incubation of the plate in the dark for 10 minutes. Well luminescence was measured on the Envision plate reader.

The % Cell Viability for each well was then calculated as follows:

%_Cell_Viability = 1 - ( MedianRFU_High_Control - RFU_Test_Compound ) / ( MedianRFU_High_Control - MedianRFU_Low_Control ) * 100

Where:

Test_Compound is defined as wells containing cells in the presence of test compound.
High_Control is defined as wells containing cells treated with media only (no compound).
Low_Control is defined as wells containing no cells (media only).

Percent Cell Viability was plotted against the log of the compound concentration. The CC50 is reported as ">X uM" (where X = the highest concentration tested for which > 50% Cell Viability was observed).

PubChem Activity Outcome and Score:

Compounds with a CC50 value equal to or less than of less than 10 uM were considered active (cytotoxic). Compounds with a CC50 value greater than 10 uM were considered inactive (non-cytotoxic).

Activity score was then ranked by the potency of the compounds with fitted curves, with the most potent compounds assigned the highest activity scores.

The PubChem Activity Score range for inactive compounds 0-0. There are no active compounds.

List of Reagents:

Tangotrade mark OPRK1-bla U2OS Cells (Invitrogen K1576)
McCoy's 5A Medium (Invitrogen, part 16600-082)
FBS (Invitrogen, part # 26140-079)
Penicillin / Streptomycin (Invitrogen, part # 15140-122)
Cell Titer-Glo (Promega, part G7572)
384-well plates (Corning 3570)
Comment
This assay was performed by the SRIMSC with powder samples of synthesized test compounds.
Categorized Comment - additional comments and annotations
From BioAssay Depositor:
Assay: CurveFit [1]: Equation: = 100 / ( 1 + 10^( ( [LogCC50] - Log( [Concentration] * 10^-6 ) * [Hill Slope] ) )
Assay: Dictionary: Version: 0.1
From PubChem:
Assay Format: Cell-based
Assay Type: Toxicity
Assay Cell Type: U-2 OS
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
1QualifierActivity Qualifier identifies if the resultant data CC50 came from a fitted curve or was determined manually to be less than or greater than its listed CC50 concentration.String
2CC50*The value for concentration at which 50% of surviving cells are observed; CC50 shown in micromolar.FloatμM
3LogCC50The log of the CC50Float
4Hill SlopeThe Hill SlopeFloat
5Viability at 10 uM [1] (10μM**)Viability at 10 uM compound concentration; replicate [1]Float%
6Viability at 10 uM [2] (10μM**)Viability at 10 uM compound concentration; replicate [2]Float%
7Viability at 10 uM [3] (10μM**)Viability at 10 uM compound concentration; replicate [3]Float%
8Viability at 10 uM [4] (10μM**)Viability at 10 uM compound concentration; replicate [4]Float%
9Viability at 3.33 uM [1] (3.33μM**)Viability at 3.33 uM compound concentration; replicate [1]Float%
10Viability at 3.33 uM [2] (3.33μM**)Viability at 3.33 uM compound concentration; replicate [2]Float%
11Viability at 3.33 uM [3] (3.33μM**)Viability at 3.33 uM compound concentration; replicate [3]Float%
12Viability at 3.33 uM [4] (3.33μM**)Viability at 3.33 uM compound concentration; replicate [4]Float%
13Viability at 1.11 uM [1] (1.11μM**)Viability at 1.11 uM compound concentration; replicate [1]Float%
14Viability at 1.11 uM [2] (1.11μM**)Viability at 1.11 uM compound concentration; replicate [2]Float%
15Viability at 1.11 uM [3] (1.11μM**)Viability at 1.11 uM compound concentration; replicate [3]Float%
16Viability at 1.11 uM [4] (1.11μM**)Viability at 1.11 uM compound concentration; replicate [4]Float%
17Viability at 0.37 uM [1] (0.37μM**)Viability at 0.37 uM compound concentration; replicate [1]Float%
18Viability at 0.37 uM [2] (0.37μM**)Viability at 0.37 uM compound concentration; replicate [2]Float%
19Viability at 0.37 uM [3] (0.37μM**)Viability at 0.37 uM compound concentration; replicate [3]Float%
20Viability at 0.37 uM [4] (0.37μM**)Viability at 0.37 uM compound concentration; replicate [4]Float%
21Viability at 0.123 uM [1] (0.123μM**)Viability at 0.123 uM compound concentration; replicate [1]Float%
22Viability at 0.123 uM [2] (0.123μM**)Viability at 0.123 uM compound concentration; replicate [2]Float%
23Viability at 0.123 uM [3] (0.123μM**)Viability at 0.123 uM compound concentration; replicate [3]Float%
24Viability at 0.123 uM [4] (0.123μM**)Viability at 0.123 uM compound concentration; replicate [4]Float%
25Viability at 0.0411 uM [1] (0.0411μM**)Viability at 0.0411 uM compound concentration; replicate [1]Float%
26Viability at 0.0411 uM [2] (0.0411μM**)Viability at 0.0411 uM compound concentration; replicate [2]Float%
27Viability at 0.0411 uM [3] (0.0411μM**)Viability at 0.0411 uM compound concentration; replicate [3]Float%
28Viability at 0.0411 uM [4] (0.0411μM**)Viability at 0.0411 uM compound concentration; replicate [4]Float%
29Viability at 0.0137 uM [1] (0.0137μM**)Viability at 0.0137 uM compound concentration; replicate [1]Float%
30Viability at 0.0137 uM [2] (0.0137μM**)Viability at 0.0137 uM compound concentration; replicate [2]Float%
31Viability at 0.0137 uM [3] (0.0137μM**)Viability at 0.0137 uM compound concentration; replicate [3]Float%
32Viability at 0.0137 uM [4] (0.0137μM**)Viability at 0.0137 uM compound concentration; replicate [4]Float%
33Viability at 0.00457 uM [1] (0.00457μM**)Viability at 0.00457 uM compound concentration; replicate [1]Float%
34Viability at 0.00457 uM [2] (0.00457μM**)Viability at 0.00457 uM compound concentration; replicate [2]Float%
35Viability at 0.00457 uM [3] (0.00457μM**)Viability at 0.00457 uM compound concentration; replicate [3]Float%
36Viability at 0.00457 uM [4] (0.00457μM**)Viability at 0.00457 uM compound concentration; replicate [4]Float%
37Viability at 0.00152 uM [1] (0.00152μM**)Viability at 0.00152 uM compound concentration; replicate [1]Float%
38Viability at 0.00152 uM [2] (0.00152μM**)Viability at 0.00152 uM compound concentration; replicate [2]Float%
39Viability at 0.00152 uM [3] (0.00152μM**)Viability at 0.00152 uM compound concentration; replicate [3]Float%
40Viability at 0.00152 uM [4] (0.00152μM**)Viability at 0.00152 uM compound concentration; replicate [4]Float%
41Viability at 0.000508 uM [1] (0.000508μM**)Viability at 0.000508 uM compound concentration; replicate [1]Float%
42Viability at 0.000508 uM [2] (0.000508μM**)Viability at 0.000508 uM compound concentration; replicate [2]Float%
43Viability at 0.000508 uM [3] (0.000508μM**)Viability at 0.000508 uM compound concentration; replicate [3]Float%
44Viability at 0.000508 uM [4] (0.000508μM**)Viability at 0.000508 uM compound concentration; replicate [4]Float%
45Viability at 0.000169 uM [1] (0.000169μM**)Viability at 0.000169 uM compound concentration; replicate [1]Float%
46Viability at 0.000169 uM [2] (0.000169μM**)Viability at 0.000169 uM compound concentration; replicate [2]Float%
47Viability at 0.000169 uM [3] (0.000169μM**)Viability at 0.000169 uM compound concentration; replicate [3]Float%
48Viability at 0.000169 uM [4] (0.000169μM**)Viability at 0.000169 uM compound concentration; replicate [4]Float%
49Viability at 0.0000565 uM [1] (5.65e-05μM**)Viability at 0.0000565 uM compound concentration; replicate [1]Float%
50Viability at 0.0000565 uM [2] (5.65e-05μM**)Viability at 0.0000565 uM compound concentration; replicate [2]Float%
51Viability at 0.0000565 uM [3] (5.65e-05μM**)Viability at 0.0000565 uM compound concentration; replicate [3]Float%
52Viability at 0.0000565 uM [4] (5.65e-05μM**)Viability at 0.0000565 uM compound concentration; replicate [4]Float%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: R03NS053751

Data Table (Concise)
Data Table ( Complete ):     View All Data
PageFrom: