Bookmark and Share
BioAssay: AID 652021

Cytotoxicity screening for potential Inhibitors of Bacterial Capsule Biogenesis (4)

Cytoxicity Assay Rationale and Summary: acquired urinary tract infections (UTIs). Over 100 million UTIs occur annually throughout the world, including more than 7 million cases in U.S. adolescents and adults. UTIs in younger children are associated with greater risk of morbidity and mortality than in older children and adults. Antimicrobial resistance among UPEC is on the rise, driving efforts to more ..
_
   
 Tested Compounds
 Tested Compounds
All(9)
 
 
Active(3)
 
 
Inactive(6)
 
 
 Tested Substances
 Tested Substances
All(9)
 
 
Active(3)
 
 
Inactive(6)
 
 
 Related BioAssays
 Related BioAssays
AID: 652021
Data Source: Molecular Libraries Program, Specialized Chemistry Center, University of Kansas (KUA10019_BacCap_Cytotox)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2013-02-07
Hold-until Date: 2013-07-10
Modify Date: 2013-07-11

Data Table ( Complete ):           Active    All
BioActive Compounds: 3
Depositor Specified Assays
Show more
AIDNameTypeComment
488966Primary and Confirmatory Screening for Inhibitors of Bacterial Capsule Biogenesisconfirmatory
493020Cytotoxicity screening for potential Inhibitors of Bacterial Capsule Biogenesisconfirmatory
504769Cytotoxicity screening for potential Inhibitors of Bacterial Capsule Biogenesis (2)confirmatory
504358Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 with C7 controlconfirmatory
504543Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 with C7 control (2)confirmatory
504675Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 with C7 control (3)confirmatory
504768Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 with C7 control (4)confirmatory
504349Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibitionconfirmatory
504538Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibition (2)confirmatory
504767Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibition (4)confirmatory
504733Orcinol Secondary Screening for Inhibitors of Bacterial Capsule Biogenesisother
588321Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 (5).confirmatory
588322Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibition (5)confirmatory
588386Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 (6)confirmatory
588399Cytotoxicity screening for potential Inhibitors of Bacterial Capsule Biogenesis (4)confirmatory
588395Screening for Inhibitors of Bacterial Capsule Biogenesis E.coli strain UT189 (7)confirmatory
602408Confirmatory Screen for Inhibitors of Bacterial Capsule Biogenesis (2)confirmatory
602414Cytotoxicity screening for potential Inhibitors of Bacterial Capsule Biogenesis (5)confirmatory
624055Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibition (6)confirmatory
624056Screening for Inhibitors of Bacterial Capsule Biogenesis - T7 Lysis Inhibition (7)confirmatory
624061K5 Secondary Screening for Inhibitors of Bacterial Capsule Biogenesisother
624060Orcinol Secondary Screening for Inhibitors of Bacterial Capsule Biogenesis (2)other
488970Screening for Inhibitors of Bacterial Caspule Biogenesis - Summarysummary
Description:
Cytoxicity Assay Rationale and Summary: acquired urinary tract infections (UTIs). Over 100 million UTIs occur annually throughout the world, including more than 7 million cases in U.S. adolescents and adults. UTIs in younger children are associated with greater risk of morbidity and mortality than in older children and adults. Antimicrobial resistance among UPEC is on the rise, driving efforts to elucidate vulnerable targets in the molecular pathogenesis of infection. New insights into the roles of K capsules in UPEC virulence during UTI make capsules an attractive target. Uropathogenic Escherichia coli (UPEC) produces 80% of community-acquired urinary tract infections (UTI). UPEC is also a leading cause of nosocomial UTI, the most prevalent hospital acquired infection. Dissemination of UPEC from the lower urinary tract is associated with morbidity and mortality through infection of the kidneys, bloodstream, and central nervous system. In recent years, the treatment of outpatient and inpatient UTI has been severely compromised by the rising incidence of antibiotic-resistant UPEC.

Investigators have found that encapsulation is an important UPEC virulence factor. The K1 capsule type is closely associated with pathogenic isolates; not only is it the leading type in UTI, but it also accounts for much of the extra-urinary tract complications. Animals studies of E. coli K1 sepsis demonstrated that injection of K1 capsule degrading enzyme abrogates infection. However, the enzyme treatment is immunogenic; accordingly, chemical inhibition may prove to be a superior approach.

Of the different K types, the Group 2 and Group 3 capsules are most prevalent among UPEC isolates, with K1 and K5 being leading types. Although the capsules have different compositions, they are synthesized, assembled, and exported by functionally homologous factors, leading us to hypothesize that we can develop small molecular inhibitors of K-type encapsulation that target the most medically important K types. Furthermore, the medically important infectious agents Campylobacter jejuni, Hemophilus influenzae, Neisseria meningitides, and Salmonella typhimurium among others, use these homologues in the biogenesis of their capsules. By exploiting the properties of a K-type specific phage, we performed a small scale high-throughput screen of >2,100 molecules from the NCI that uncovered several promising inhibitors of K1 and K5 encapsulation. This assay will identify a larger number of inhibitors with different mechanisms of action from which we may determine the optimal targets for capsule biogenesis inhibition and develop analogues with pharmacologically optimized properties.

Chemical modulators of K1 encapsulation might represent a new avenue to combat the catastrophic effects K1 diseases. To this end, this team has successfully developed a 1536-well high-throughput primary screen suitable for the discovery of novel capsule biogenesis inhibitors. This 384-well format counter-screen for hit toxicity in Bladder 5637 cells, along with the secondary assays for target validation will allow a prioritization of "hits" from the primary screen.
Protocol
Bladder 5637 Cell Cytotoxicity Dose Response Screen. The dose response testing established the compound cytotoxicity and subsequent release of LDH from non-viable cells and CC50 data necessary to determine the compounds advanced to secondary screens and target localization studies. Compounds were plated in 96-well microplates in quadruplicate . Bladder carcinoma 5637 cells were added to the compounds, and 72 hrs later LDH release was measured using p-Nitrophenyl phosphate tablets. Triton-X 100 (0.1%) was used as a positive cytotoxic control. The absorbance was then read at 405nm. Compound cytotoxicity and the 50% toxic concentration (CC50) was determined and compared to IC50 to calculate the therapeutic index.

Cell viability was calculated relative to the mean of the cell control. Viability at each of eight tested concentrations ranging from 300 uM to 2.3 uM. Compounds that showed cell viability < 80% were considered Active (or Toxic). CC50 values were calculated using GraphPad Prism.
Comment
The following tiered system has been implemented at The University of Kansas for use with the PubChem Score. Compounds in the primary screen are scored on a scale of 0-40 based on inhibitory activity where a score of 40 corresponds to 100% inhibition. In confirmatory (dose response) screens active compounds are scored on a scale of 41-80 based on the CC50 result compounds that did not show activity were given the score 0. Active purified or synthesized compounds are scored on a scale of 81-100 based on the Average Active CC50 result with inactive compounds receiving the score of 0.
Compounds that showed cell viability < 80% were considered Active (or Toxic). Compounds qualifying as Active in one replicate and Inactive in another are identified as Inconclusive.
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1CC50 ModifierString
2CC50*Cytotoxic concentrationFloatμM
3% Cell Viability @ 300 uM (300μM**)Float%
4% Cell Viability @ 150 uM (150μM**)Float%
5% Cell Viability @ 75 uM (75μM**)Float%
6% Cell Viability @ 37.5 uM (37.5μM**)Float%
7% Cell Viability @ 18.75 uM (18.75μM**)Float%
8% Cell Viability @ 9.38 uM (9.38μM**)Float%
9% Cell Viability @ 4.69 uM (4.69μM**)Float%
10% Cell Viability @ 2.34 uM (2.34μM**)Float%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: 1 R03 MH090791-01

Data Table (Concise)
PageFrom: