Bookmark and Share
BioAssay: AID 637690

Displacement of [3H]-AD-5061 from human GST-tagged PPARgamma

Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) gamma agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARgamma ligand binding domain suggested that modification of the carboxylic acid more ..
_
   
 Tested Compounds
 Tested Compounds
All(4)
 
 
Active(4)
 
 
 Tested Substances
 Tested Substances
All(4)
 
 
Active(4)
 
 
AID: 637690
Data Source: ChEMBL (795138)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: Literature, Extracted
BioAssay Version:
Deposit Date: 2012-09-09
Modify Date: 2014-05-25

Data Table ( Complete ):           Active    All
Target
Sequence: RecName: Full=Peroxisome proliferator-activated receptor gamma; Short=PPAR-gamma; AltName: Full=Nuclear receptor subfamily 1 group C member 3
Description ..   
Protein Family: The ligand binding domain of peroxisome proliferator-activated receptors
Comment ..   

Gene:PPARG     Related Protein 3D Structures     More BioActivity Data..
BioActive Compounds: 4
Description:
Title: A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) gamma agonists: design and synthesis of benzylpyrazole acylsulfonamides.

Abstract: Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) gamma agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARgamma ligand binding domain suggested that modification of the carboxylic acid of 2 would help strengthen the interaction of 2 with the TZD pocket and afford non-carboxylic-acid-based agonists. In this study, we used an acylsulfonamide group as the ring-opening analog of TZD as an isosteric replacement of carboxylic acid moiety of 2; further, preliminary modification of the terminal alkyl chain on the sulfonyl group gave the lead compound 3c. Subsequent optimization of the resulting compound gave the potent agonists 25c, 30b, and 30c with high metabolic stability and significant antidiabetic activity. Further, we have described the difference in binding mode of the carboxylic-acid-based agonist 1 and acylsulfonamide 3d.
(PMID: 22209730)
Comment
Compounds with activity <= 50uM or explicitly reported as active by ChEMBL are flagged as active in this PubChem assay presentation.

Categorized Comment
Assay Type: Binding

Assay Data Source: Scientific Literature

BAO: Assay Format: biochemical format

Target Type: Target is a single protein chain

Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
1IC50*IC50 PubChem standard valueFloatμM
3BEIBinding Efficiency Index(nM)Float
2SEISurface Efficiency Index(nM)Float
4LELigand EfficiencyFloat
5LLELipophilic Ligand EfficiencyFloat
6IC50 activity commentIC50 activity commentString
7IC50 standard flagIC50 standard flagInteger
8IC50 qualifierIC50 qualifierString
9IC50 published valueIC50 published valueFloatnM
10IC50 standard valueIC50 standard valueFloatnM
11IC50 binding domainsIC50 binding domainsString

* Activity Concentration.

Data Table (Concise)
Classification
PageFrom: