Bookmark and Share
BioAssay: AID 624504

Single concentration confirmation of uHTS inhibitor hits of the mitochondrial permeability transition pore via a fluorescent based assay

Given its multifactorial roles, regulation of cellular Ca2+ metabolism and bioenergetics functions as an integrated system. In terms of normal physiology, this integration is reflected in mitochondrion's high capacity to store Ca2+ which may protect cells like neurons against transient elevation in intracellular Ca2+ during periods of hyperactivity. Furthermore, mitochondrial release of Ca2+ can more ..
_
   
 Tested Compounds
 Tested Compounds
All(5034)
 
 
Active(3944)
 
 
Inactive(1090)
 
 
 Tested Substances
 Tested Substances
All(5040)
 
 
Active(3944)
 
 
Inactive(1096)
 
 
 Related BioAssays
 Related BioAssays
AID: 624504
Data Source: Burnham Center for Chemical Genomics (SBCCG-A888-mtPTP-CP-Assay)
BioAssay Type: Primary, Primary Screening, Single Concentration Activity Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
Deposit Date: 2012-08-21

Data Table ( Complete ):           View Active Data    View All Data
BioActive Compounds: 3944
Related Experiments
Show more
AIDNameTypeComment
602449uHTS identification of small molecule inhibitors of the mitochondrial permeability transition pore via an absorbance assayScreeningdepositor-specified cross reference
602491Summary assay for small molecule inhibitors of the mitochondrial permeability transition poreSummarydepositor-specified cross reference
720722On Hold
720723On Hold
720728On Hold
743359On Hold
743360On Hold
743361On Hold
651561Dose response confirmation of uHTS inhibitor hits of the mitochondrial permeability transition pore via an absorbance assayConfirmatorysame project related to Summary assay
651564Dose response confirmation of uHTS inhibitor hits of the mitochondrial permeability transition pore via a fluorescent based counterscreen assayConfirmatorysame project related to Summary assay
Description:
Data Source: Sanford-Burnham Center for Chemical Genomics (SBCCG)
Source Affiliation: Sanford-Burnham Medical Research Institute (SBMRI, San Diego, CA)
Network: NIH Molecular Libraries Probe Production Centers Network (MLPCN)
Grant Number: 1 R03 MH096534-01
Assay Provider: Michael Forte, Ph.D., Oregon Health & Science University, Portland, OR

Given its multifactorial roles, regulation of cellular Ca2+ metabolism and bioenergetics functions as an integrated system. In terms of normal physiology, this integration is reflected in mitochondrion's high capacity to store Ca2+ which may protect cells like neurons against transient elevation in intracellular Ca2+ during periods of hyperactivity. Furthermore, mitochondrial release of Ca2+ can amplify and sustain signals arising from elevation of cytoplasmic Ca2+ in response to extracellular events. An additional consequence of mitochondrial Ca2+ accumulation is the stimulation of oxidative metabolism through the activation of matrix Ca2+-sensitive dehydrogenases. As a result, mitochondrial Ca2+ homeostasis is tightly regulated and is based in a series of specific uptake and release systems. Importantly, regulation of ion fluxes across mitochondrial membranes, specifically the inner mitochondrial membrane (IMM), is essential since energy is stored in the form of a proton electrochemical gradient which is used to drive both ATP synthesis and mitochondrial Ca2+ uptake and release.

One mitochondrial Ca2+ efflux pathway is represented by the mitochondrial permeability transition pore (mtPTP) which, in vitro, results in an increase of the IMM permeability to solutes with molecular masses of about 1,500 Da or lower causing mitochondrial swelling. Ca2+ uptake is a permissive factor for mtPTP activation. A great deal of information is available about the functional properties of the mtPTP.

In intact cells under normal conditions, mtPTP opens only transiently (and reversibly). These transient states likely mediate the fast release of Ca2+ from mitochondria in response to normal physiological signals that raise cytosolic, and hence mitochondrial Ca2+ levels to those required for mtPTP activation (the "threshold"). However, under pathological conditions, persistent activation of the mtPTP has dramatic consequences on cellular and mitochondrial function. This mode of activation results in the collapse of the membrane potential across the IMM (required to drive mitochondrial accumulation of Ca2+ and the synthesis of ATP) and depletion of pyridine nucleotides and respiratory substrates, causing respiratory inhibition and cell death. Consequently, mtPTP has long been implicated as a target for mitochondrial dysfunction in vivo, particularly in the context of specific human pathological events.

The goal of this high-throughput assay is to identify samples within the hit set of test compounds that prevent mitochondrial swelling (see AID: 602449) via interference with the IMM potential rather than by blocking or binding to the mtPTP. This is accomplished by measuring the change in fluorescence quenching of the fluorescent dye, Rhodamine 123, a cation that is readily accumulated only by energized mitochondria, in the presence of the test compounds.
Protocol
1. Compounds are pre-spotted into assay plates the morning of or the night before the assay. Via a LabCyte Echo, 40 nL of 5 mM compound is transferred to a Greiner, 384-well, black assay plates (Greiner 781076) to achieve 10 uM in 20 uL final assay volume. To the positive control wells, 40nL of 0.2 mM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) is transferred. To the negative control wells, 40nl of DMSO is transferred.
2. Prepare Assay Buffer, Rhodamine 123 Solution and the mitochondrial suspension working stocks according to the recipes in the Reagent Section.
3. Freshly isolated mitochondria from mice are suspended in Assay Buffer (Solution 1) and 10 uL of this solution is added to all wells of the assay plate with a MultiDrop Combi. Final assay concentration of mitochondria will be about 0.25 mg/mL (Working Stock ~0.5 mg/mL), depending on relative activity of mitochondrial preparation.
4. Following the addition of the mitochondrial suspension, 10 uL of Rhodamine 123 Solution (Solution 2) is added to each well of the assay plate.
5. Assay plate is immediately spun at 1000 rpm for ~60 seconds.
6. Plate is kept at room temperature for 5 minutes and then read on the BMG Pherastar utilizing a fluorescence intensity optical module that allows for excitation at 480 nm and a read at an emission wavelength of 520 nm.
Reagents:
Assay Buffer: 250 mM sucrose, 10 mM MOPS-Tris, 0.01 mM EGTA-Tris, 1.0 mM phosphoric acid, pH 7.4.
Solution 1: 0.5 mg/mL mitochondria in Assay Buffer.
Solution 2: 0.8 uM Rhodamine 123, 5.0 mM glutamate and 2.5 mM maleate in Assay Buffer.
Comment
Compounds that demonstrated a % activity_mean >= 20% compared to the controls are defined as active in the assay.
To simplify the distinction between the inactives of the primary screen and of the confirmatory screening stage, the Tiered Activity Scoring System was developed and implemented.
Activity Scoring
Activity scoring rules were devised to take into consideration compound efficacy, its potential interference with the assay and the screening stage that the data was obtained. Details of the Scoring System will be published elsewhere. Briefly, the outline of the scoring system utilized for the assay is as follows:
1) First tier (0-40 range) is reserved for primary screening data. The score is correlated with % activity in the assay. Scoring for the primary screening is not applicable to this assay.
a. If outcome of the primary screen is inactive, then the assigned score is 0
b. If outcome of the primary screen is inconclusive, then the assigned score is 10
c. If outcome of the primary screen is active, then the assigned score is 20
Scoring for Single concentration confirmation screening.
d. If outcome of the single-concentration confirmation screen is inactive, then the assigned score is 21
e. If outcome of the single-concentration confirmation screen is inconclusive, then the assigned score is 25
f. If outcome of the single-concentration confirmation screen is active, then the assigned score is 30
This scoring system helps track the stage of the testing of a particular SID. For the primary hits which are available for confirmation, their scores will be greater than 20. For those which are not further confirmed, their score will stay under 21.
2) Second tier (41-80 range) is reserved for dose-response confirmation data and is not applicable in this assay
3) Third tier (81-100 range) is reserved for resynthesized true positives and their analogues and is not applicable in this assay
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1%Activity at 10 uM_Mean (10μM**)Mean % inhibition in primary screeningFloat%
2%Activity at 10 uM_1 (10μM**)% inhibition in primary screening of the first replicateFloat%
3%Activity at 10 uM_2 (10μM**)% inhibition in primary screening of the second replicateFloat%
4Value_1 (10μM**)Measured value for the first replicateFloatRFU
5Value_2 (10μM**)Measured value for the second replicateFloatRFU
6Mean High_1Mean values of positive controls in the corresponding plateFloatRFU
7Mean High_2Mean values of positive controls in the corresponding plateFloatRFU
8STD Deviation High_1Standard deviation (n=64) of positive controls in the corresponding plateFloatRFU
9STD Deviation High_2Standard deviation (n=64) of positive controls in the corresponding plateFloatRFU
10Mean Low_1Mean values of negative controls in the corresponding plateFloatRFU
11Mean Low_2Mean values of negative controls in the corresponding plateFloatRFU
12STD Deviation Low_1Standard deviation (n=64) of negative controls in the corresponding plateFloatRFU
13STD Deviation Low_2Standard deviation (n=64) of negative controls in the corresponding plateFloatRFU

** Test Concentration.
Additional Information
Grant Number: 1 R03 MH096534-01

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: