Bookmark and Share
BioAssay: AID 624379

Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): Luminescence-based cell-based high throughput screening assay to identify agonists of the Herpes Virus Virion Protein 16 (VP16)

Name: Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): Luminescence-based cell-based high throughput screening assay to identify agonists of the Herpes Virus Virion Protein 16 (VP16). ..more
_
   
 Tested Compounds
 Tested Compounds
All(2313)
 
 
Active(679)
 
 
Inactive(1634)
 
 
 Tested Substances
 Tested Substances
All(2315)
 
 
Active(679)
 
 
Inactive(1636)
 
 
AID: 624379
Data Source: The Scripps Research Institute Molecular Screening Center (VP16_AG_LUMI_1536_3X%INH CSRUN)
BioAssay Type: Primary, Primary Screening, Single Concentration Activity Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
Deposit Date: 2012-07-11

Data Table ( Complete ):           View Active Data    View All Data
Target
BioActive Compounds: 679
Related Experiments
Show more
AIDNameTypeComment
2300TR-FRET-based primary biochemical high throughput screening assay to identify agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3).Screeningdepositor-specified cross reference: Primary screen (NR2E3 agonists in singlicate)
2325Summary of probe development efforts to identify agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3).Summarydepositor-specified cross reference
2379TR-FRET-based biochemical high throughput confirmation assay for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Screeningdepositor-specified cross reference: Confirmation screen (NR2E3 agonists in triplicate)
2758TR-FRET-based biochemical high throughput dose response assay for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Confirmatorydepositor-specified cross reference: Dose response (NR2E3 agonists in triplicate)
2759Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): TR-FRET-based biochemical high throughput dose response assay to identify agonists of the interaction between peroxisome proliferator-activated receptor gamma (PPARg) and nuclear receptor co-repressor 2 (NCOR2)Confirmatorydepositor-specified cross reference: Dose response counterscreen (PPARg and NCOR2 interaction agonists in triplicate)
504787Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): TR-FRET-based biochemical high throughput assay to identify agonists of the interaction between peroxisome proliferator-activated receptor gamma (PPARg) and nuclear receptor co-repressor 2 (NCOR2)Screeningdepositor-specified cross reference: Counterscreen (PPARg and NCOR2 interaction agonists in triplicate)
602229Luminescence-based cell-based high throughput primary screening assay to identify agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Screeningdepositor-specified cross reference: Primary screen (NR2E3 agonists in singlicate)
624394Luminescence-based cell-based high throughput dose response assay for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Confirmatorydepositor-specified cross reference
624395Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3):Luminescence-based cell-based high throughput dose response assay to identify inhibitors of the Herpes Virus Virion Protein 16 (VP16)Confirmatorydepositor-specified cross reference
651846Late Stage Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): Luminescence-based cell-based high throughput dose response screening assay to identify agonists of the Herpes Virus Virion Protein 16 (VP16)Confirmatorydepositor-specified cross reference
651849Late stage Luminescence-based cell-based high throughput dose response assay for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Confirmatorydepositor-specified cross reference
463256TR-FRET-based biochemical high throughput dose response assay to identify NR2E3 inverse agonistsConfirmatorysame project related to Summary assay
463257Counterscreen for NR2E3 inverse agonists: TR-FRET-based biochemical high throughput dose response assay to identify inverse agonists of the interaction between peroxisome proliferator-activated receptor gamma (PPARg) and nuclear receptor co-repressor 2 (NCOR2)Confirmatorysame project related to Summary assay
624378Luminescence-based cell-based high throughput confirmation assay for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)Screeningsame project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Konstantin Petrukhin, Columbia University
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1 R21 NS061718-01 Fast Track
Grant Proposal PI: Konstantin Petrukhin, Columbia University
External Assay ID: VP16_AG_LUMI_1536_3X%INH CSRUN

Name: Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): Luminescence-based cell-based high throughput screening assay to identify agonists of the Herpes Virus Virion Protein 16 (VP16).

Description:

Nuclear receptors are small molecule- and hormone-regulated transcription factors with discrete DNA-binding and ligand-binding domains, and are essential during development and for maintenance of proper cell function in adults. Small pharmacological compounds that bind to the cleft of the ligand-binding domain could alter receptor conformation and subsequently modify transcription of target genes. Such ligands (agonists and antagonists) have been designed for 23 nuclear receptors among the 48 identified in the human genome (1-3). NR2E3 is an orphan nuclear receptor expressed exclusively in rod and cone photoreceptor cells of the retina (4-7). In its unliganded state, NR2E3 acts as a transcriptional repressor (4, 8, 9) due to interaction with co-repressors such as retinal RetCOR (10), NCOR (11) or SMRT (11). Defects in this gene are a cause of several retinopathies (12-15). Studies showing that mice with a spontaneous deletion in the Nr2e3 gene develop late-onset, progressive retinal degeneration (7), suggest that this nuclear receptor is essential for photoreceptor development and survival. The identification of selective NR2E3 agonists would provide useful tools for the understanding of the biological role of NR2E3 in retinal diseases.

References:

1. Evans, R.M., The nuclear receptor superfamily: a rosetta stone for physiology. Mol Endocrinol, 2005. 19(6): p. 1429-38.
2. Kliewer, S.A., Lehmann, J.M., and Willson, T.M., Orphan nuclear receptors: shifting endocrinology into reverse. Science, 1999. 284(5415): p. 757-60.
3. Li, Y., Lambert, M.H., and Xu, H.E., Activation of nuclear receptors: a perspective from structural genomics. Structure, 2003. 11(7): p. 741-6.
4. Chen, J., Rattner, A., and Nathans, J., The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci, 2005. 25(1): p. 118-29.
5. Cheng, H., Khanna, H., Oh, E.C., Hicks, D., Mitton, K.P., and Swaroop, A., Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet, 2004. 13(15): p. 1563-75.
6. Haider, N.B., Naggert, J.K., and Nishina, P.M., Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet, 2001. 10(16): p. 1619-26.
7. Akhmedov, N.B., Piriev, N.I., Chang, B., Rapoport, A.L., Hawes, N.L., Nishina, P.M., Nusinowitz, S., Heckenlively, J.R., Roderick, T.H., Kozak, C.A., Danciger, M., Davisson, M.T., and Farber, D.B., A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci U S A, 2000. 97(10): p. 5551-6.
8. Gerber, S., Rozet, J.M., Takezawa, S.I., dos Santos, L.C., Lopes, L., Gribouval, O., Penet, C., Perrault, I., Ducroq, D., Souied, E., Jeanpierre, M., Romana, S., Frezal, J., Ferraz, F., Yu-Umesono, R., Munnich, A., and Kaplan, J., The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition. Hum Genet, 2000. 107(3): p. 276-84.
9. Kobayashi, M., Hara, K., Yu, R.T., and Yasuda, K., Expression and functional analysis of Nr2e3, a photoreceptor-specific nuclear receptor, suggest common mechanisms in retinal development between avians and mammals. Dev Genes Evol, 2008. 218(8): p. 439-44.
10. Takezawa, S., Yokoyama, A., Okada, M., Fujiki, R., Iriyama, A., Yanagi, Y., Ito, H., Takada, I., Kishimoto, M., Miyajima, A., Takeyama, K., Umesono, K., Kitagawa, H., and Kato, S., A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. EMBO J, 2007. 26(3): p. 764-74.
11. Kapitskaya, M., Cunningham, M.E., Lacson, R., Kornienko, O., Bednar, B., and Petrukhin, K., Development of the high throughput screening assay for identification of agonists of an orphan nuclear receptor. Assay Drug Dev Technol, 2006. 4(3): p. 253-62.
12. Bernal, S., Solans, T., Gamundi, M.J., Hernan, I., de Jorge, L., Carballo, M., Navarro, R., Tizzano, E., Ayuso, C., and Baiget, M., Analysis of the involvement of the NR2E3 gene in autosomal recessive retinal dystrophies. Clin Genet, 2008. 73(4): p. 360-6.
13. Coppieters, F., Leroy, B.P., Beysen, D., Hellemans, J., De Bosscher, K., Haegeman, G., Robberecht, K., Wuyts, W., Coucke, P.J., and De Baere, E., Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet, 2007. 81(1): p. 147-57.
14. Gire, A.I., Sullivan, L.S., Bowne, S.J., Birch, D.G., Hughbanks-Wheaton, D., Heckenlively, J.R., and Daiger, S.P., The Gly56Arg mutation in NR2E3 accounts for 1-2% of autosomal dominant retinitis pigmentosa. Mol Vis, 2007. 13: p. 1970-5.
15. Sharon, D., Sandberg, M.A., Caruso, R.C., Berson, E.L., and Dryja, T.P., Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol, 2003. 121(9): p. 1316-23.

Keywords:

counterscreen, triplicate, VP16, NCOR, CHO, cell-based, lumi, luminescence, alternate, nuclear receptor subfamily 2, group E, member 3, NR2E3; RetCOR, corepressor, photoreceptor-specific nuclear receptor; PNR, blindness, age-related macular degeneration, AMD, orphan nuclear receptor, agonist, activator, HTS, 1536, Scripps, Scripps Florida, Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this cell-based assay is to determine whether compounds identified as active in a set of experiments entitled, "Luminescence-based cell-based high throughput primary screening assay to identify agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3)" (AID 602229) are nonselective or promiscuous transcriptional modulators. In this counterscreen, the strong transactivation domain of the herpes simplex virus Virion Protein 16 (VP16) is fused to the yeast GAL4 DNA Binding Domain (DBD) in place of the original NCOR moeiety used in the NR2E3 assay. Cells are co-transfected with the pGL4.31 luciferase reporter plasmid containing UAS repeats. As designed, compounds that repress VP16 transcriptional activity and/or prevent GAL4 binding to the UAS sequence will lead to a reduced expression of the pGL4.31 luciferase reporter gene, resulting in decreased well luminescence. These compounds are likely to be nonselective agonists. Compounds are tested in triplicate at a final nominal concentration of 4 uM.

Protocol Summary:

The CHO-S cell line was routinely cultured in 850 sq cm smooth surface, vented cap roller bottles at 37 C, 95% relative humidity (RH) and shaken at 135-155 rpm. The growth media consisted of Freestyle CHO Expression Medium supplemented with 8 mM L-Glutamine and 1X antibiotic mix (penicillin, streptomycin, and neomycin).

CHO-S cells were suspended in roller bottles at a density of 0.6 million cells/mL in CHO Expression Medium supplemented with 8 mM L-Glutamine. The following day, cells were diluted to a density of 1 million cells/mL and transfected one of two ways: one population was transfected with 0.112 ug/mL of pGL4.31 reporter plasmid and 0.54 ug/mL of VP16 plasmid, complexed with 1.2 uL/mL of Freestyle Max Reagent in 38.4 uL/mL of OptiPRO SFM according to the Freestyle Max Reagent manufacturer's protocol (+VP16 cells). The second poplulation was transfected with 0.112 ug/mL of pGL4.31 reporter plasmid complexed with 1.2 uL/mL of Freestyle Max Reagent in 38.4 uL/mL of OptiPRO SFM according to the Freestyle Max Reagent manufacturer's protocol (-VP16 cells). Sixteen hours after transfection, 3750 cells in 5 uL of media were seeded into each well of 1536 well microtiter plates. The -VP16 cell population was dispensed to column 1 and 2 and was used as a high control mimicking inhibition. The +VP16 cell population was dispensed over the rest of the plate, with the exception of column 48 that received only media. Next, 20 nL of test compound in DMSO, or DMSO alone were dispensed to the appropriate wells. The plates were then incubated for 24 hours at 37 C, 5% CO2, and 95 % RH. Luciferase levels were measured by adding 5 uL of One-Glo Luciferase Assay (prepared according to the manufacturer's protocol) to each well; followed by 10 minute incubation at room temperature. Then, Well Luminescence was read on the ViewLux plate reader. The percent inhibition for each compound was calculated as follows:

% Inhibition = ( ( Ratio_Test_Compound - Median_Ratio_Low_Control ) / ( Median_Ratio_High_Control - Median_Ratio_Low_Control ) ) * 100

Where:

High_Control is defined as wells containing DMSO and -VP16 cells.
Test_Compound is defined as wells containing test compounds, DMSO and +VP16 cells.
Low_Control is defined as wells containing DMSO and +VP16 cells.

PubChem Activity Outcome and Score:

The average percent inhibition and standard deviation of each compound tested were calculated. The sum of these two values was used as a hit cutoff parameter. Any compound that exhibited an average percent inhibition greater than the calculated hit cutoff was declared active.

The reported PubChem Activity Score has been normalized to 100% observed primary activation. Negative % inhibition values are reported as activity score zero.

The PubChem Activity Score range for active compounds is 100-70, for inactive 70-0.

List of Reagents:

Freestyle CHO-S Cells (Invitrogen, part R800-07)
Freestyle CHO-S Expression Medium (Invitrogen, part 12651-022)
Freestyle Max Reagent (Invitrogen, part 16447-100)
OptiPRO SFM (Invitrogen, part 12309-050)
100X Penicillin-Streptomycin-Neomycin mix (Invitrogen, part 15640-055)
L-Glutamine-200mM (Invitrogen, part 25030-081)
BD Falcon Roller Bottles-Smooth Surface (Bd Vacutainer Labware Medical, part 353154 )
pGL4.31 (Promega, part C935)
pVP16 (Assay provider)
1536-well plates (Corning, part 7298)
Comment
Due to the increasing size of the MLPCN compound library, this assay may have been run as two or more separate campaigns, each campaign testing a unique set of compounds. All data reported were normalized on a per-plate basis. Possible artifacts of this assay can include, but are not limited to: dust or lint located in or on wells of the microtiter plate, and compounds that modulate well luminescence. All test compound concentrations reported above and below are nominal; the specific test concentration(s) for a particular compound may vary based upon the actual sample provided by the MLSMR. The MLSMR was unable to provide all compounds selected for testing in this assay.
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1Average Inhibition at 3.98 uM (3.98μM**)Normalized percent inhibition of the counterscreen at a compound concentration of 3.98 micromolar.Float%
2Standard DeviationStandard deviation of the counterscreen derived from the normalized percent inhibition of the triplicate data for each compound.Float
3Inhibition at 3.98 uM [1] (3.98μM**)Percent inhibition of the counterscreen at a compound concentration of 3.98 micromolar.Float%
4Inhibition at 3.98 uM [2] (3.98μM**)Percent inhibition of the counterscreen at a compound concentration of 3.98 micromolar.Float%
5Inhibition at 3.98 uM [3] (3.98μM**)Percent inhibition of the counterscreen at a compound concentration of 3.98 micromolar.Float%

** Test Concentration.
Additional Information
Grant Number: 1 R21 NS061718-01

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: