Bookmark and Share
BioAssay: AID 624000

PLD2 purified enzyme concentration response (PLD2_Assay_3B_Lib32)

Phospholipase D (PLD) generates the lipid second messenger phosphatidic acid as part of a plethora of cellular functions. Phosphatidic acid (PtdOH) is a critical signaling lipid that is generated by the hydrolysis of phosphatidylcholine and other amine containing phospholipids. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction more ..
_
   
 Tested Compounds
 Tested Compounds
All(2)
 
 
Active(2)
 
 
 Tested Substances
 Tested Substances
All(2)
 
 
Active(2)
 
 
AID: 624000
Data Source: Vanderbilt Specialized Chemistry Center (PLD2_Assay_3B_Lib32)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
Deposit Date: 2012-04-04
Hold-until Date: 2013-04-04
Modify Date: 2013-04-04

Data Table ( Complete ):           Active    All
Targets
Sequence: phospholipase D2 isoform PLD2A [Homo sapiens]
Description ..   
Protein Family: Catalytic domain, repeat 2, of vertebrate phospholipase D2

Gene:PLD2          More BioActivity Data..


more...  
BioActive Compounds: 2
Depositor Specified Assays
AIDNameTypeProbeComment
588854Summary AID for PLD inhibitor development projectsummary3 Summary AID for PLD inhibitor development project (PLD1_PLD2_Project_Summary)
602150PLD1 purified enzyme concentration responseconfirmatory PLD1 purified enzyme concentration response (PLD1_Assay_3A)
602149PLD2 purified enzyme concentration responseconfirmatory PLD2 purified enzyme concentration response (PLD2_Assay_3B)
602151Cellular PLD1 concentration responseconfirmatory Cellular PLD1 concentration response (PLD1_Assay_2A)
602147Cellular PLD2 concentration responseconfirmatory Cellular PLD2 concentration response (PLD2_Assay_2B)
602144Cellular PLD1 isoenzyme activity assays at set concentrationscreening Cellular PLD1 isoenzyme activity assays at set concentration (PLD1_Assay_1A)
602143Cellular PLD2 isoenzyme activity assays at a set concentrationscreening Cellular PLD2 isoenzyme activity assays at a set concentration (PLD2_Assay_1B)
623933ML298, ML299 Competition in Radioligand Binding assays (Ricerca)other ML298, ML299 Competition in Radioligand Binding assays (Ricerca)
Description:
Phospholipase D (PLD) generates the lipid second messenger phosphatidic acid as part of a plethora of cellular functions. Phosphatidic acid (PtdOH) is a critical signaling lipid that is generated by the hydrolysis of phosphatidylcholine and other amine containing phospholipids. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. Two mammalian isoforms of PLD have been identified, PLD1 and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms (1). Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion, and decreased metastasis of cancer cells (2,3); therefore, the development of isoform-specific PLD inhibitors is a novel approach for the treatment of cancer.

In addition to the importance of PLD in cancer cell survival it has been shown that this enzyme is the major source of signaling PtdOH in many cells, including neutrophils, macrophages, and airway epithelial cells that play key roles in defense against infection. PLD1 was recently confirmed as a primary regulator of Fc-gamma receptor-stimulated ROS production in neutrophils (4) using a strategic combination of genetic knockouts and pharmacological inhibitors. A recent report in Nature identified PLD2 as a gene that when downregulated drastically reduced viral replication of a panel of influenza strains including avian H5N1, endemic H1N1 and the pandemic swine flu of 2009 (5), although two related reports (6,7) using similar approaches failed to identify PLD isoenzymes as being relevant in influenza. Also because of PLD's role in vesicular trafficking, more specifically the link between PLD activity and influenza virus haemagglutinin (HA) trafficking to the plasma membrane (8), we hypothesize that this enzyme is a critical target to combat influenza infection. Current therapeutics strategies rely on vaccines or molecules targeting viral neuraminidase, both of which are subject to rapid resistance development.

In preliminary findings, PLD1 and PLD2 have been strongly implicated as playing essential roles in the entry of influenza virus into human airway epithelial cells. Given that PLD1-and PLD2-knockout animals are viable and appear to lack any obvious deficits, we hypothesize that PLD is a novel and therapeutically attractive target for blocking influenza infection. We propose to optimize potency, isoenzyme selectivity, and drug metabolism/pharmacokinetic parameters to develop chemical tool compounds into a preclinical lead compound for therapeutic development.

The development of these tool compounds will be essential in understanding the roles played by PLD in modulating cell responses to oxidative stress that is involved in a variety of human diseases including cancer, infectious disease, cardiovascular diseases and other conditions that are consequences of chronic, pathological inflammation. The development of these tool compounds has empowered the PLD signaling field. Still, major challenges remain to develop more potent and selective compounds that differentiate between PLD1 and PLD2 isoenzymes.

As previously described (2) this is accomplished through a set of parallel assays:

The primary screen will be a parallel single dose screen in two different cell lines. To determine if compounds are active against cellular PLD1, phorbol 12-myristate 13-acetate (PMA) stimulated Calu-1 cells will be used. It has previously been shown that under these conditions the PLD activity in these cells is strictly due to the PLD1 isozyme. A parallel PLD2 centric assay is also carried out using HEK293 cells stably overexpressing gfp-PLD2. Data is expressed as percent activity which is calculated from the vehicle control samples present in each assay with background lipid signals subtracted.

REFERENCES
1. Selvy, P.E., et al., Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev, 2011. 111(10): p. 6064-119.
2. Scott, S.A., et al., Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol, 2009. 5(2): p. 108-17.
3. Lavieri, R.R., et al., Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem, 2010. 53(18): p. 6706-19.
4. Norton, L., et al., PLD1, rather than PLD2, regulates phorbol ester-, adhesion dependent-, and Fcgamma receptor stimulated reactive oxygen species production in neutrophils. Journal of cell science, 2011. 124(12): p. 1973-83.
5. Karlas, A., et al., Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010. 463(7282): p. 818-22.
6. Shapira, S.D., et al., A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 2009. 139(7): p. 1255-67.
7. Brass, A.L., et al., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009. 139(7): p. 1243-54.
8. Bi, K., M.G. Roth, and N.T. Ktistakis, Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol., 1997. 7(5): p. 301-7.
9. Brown, H.A., et al., Biochemical analysis of phospholipase D. Methods Enzymol., 2007. 434: p. 49-87.
Protocol
In vitro PLD2 concentration response curve
PLD activity is measured as the release of [methyl-3H]choline from [choline-methyl-3H]dipalmitoylphosphatidylcholine. Phospholipid vesicles are composed of 82.9 mol% pig liver phosphatidylethanolamine, 8 mol% phosphatidylinositol-4,5-bisphosphate, 1.1 mol% cholesterol, 8 mol% dipalmitoylphosphatidylcholine, and 0.03% [choline-methyl-3H]dipalmitoylphosphatidylcholine. Lipid solutions are dried and resuspended by bath sonication in a buffer composed of 100 mM HEPES, 6 mM EGTA, 160 mM KCl, and 2 mM DTT to prepare multilamellar vesicles.

*PLD enzyme (6-his-PLD2a = 15 nM was generated are described in Scott, SA. Et.al (2009) Nat. Chem Biol. 5, 108-117) is reconstituted with 10 uM GTP-gammaS, 9 mM MgCl2, 9 mM CaCl2, 400 nM Arf, and PLD inhibitor (concentration ranging from 20 uM to 20 pM) or DMSO vehicle control and 117uM phospholipid vesicles such that the final reaction contains 50 mM HEPES, 80 mM KCl, 1 mM DTT, 3 mM MgCl2, 1 mM CaCl2, 10 uM GTP-gammaS, 400 nM Arf and 117 uM phospholipid vesicles.

All assays were performed at 37 degrees C with agitation for 30 min. Reactions were quenched by addition of 200 ul 10% trichloroacetic acid and 100 ul 10 mg/ml bovine serum albumin. Free [methyl-3H]choline was separated from precipitated lipids and proteins by centrifugation and analyzed by liquid scintillation counting. Raw data are normalized and are presented as percent total activity. All experiments are performed in triplicate and average values are reported for a single experimental determination. A concentration response curve is generated using GraphPad Prism 4 software and IC50 values are obtained from the non-linear curve fitting (sigmoidal dose reponse) of the data.
Comment
After initial hits are identified using the above parallel primary screens compounds with >50% inhibition for both isoforms, or compounds which display isoform preferential inhibition are further characterized using cellular concentration response curves in each of the previously described cell types.
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1IC50_uM*Potency for inhibition of PLD2 in Exogenous protein-based assayFloatμM
2Max_CL95Maximum IC50 for PLD2 activity at upper 95% confidence limitFloatμM
3Min_CL95Minimum IC50 for PLD2 activity at lower 95% confidence limitFloatμM
4value_at_0.000200_uM (0.0002μM**)Measured Percent PLD2 Activity at concentrationFloat%
5value_at_0.002000_uM (0.002μM**)Measured Percent PLD2 Activity at concentrationFloat%
6value_at_0.020000_uM (0.02μM**)Measured Percent PLD2 Activity at concentrationFloat%
7value_at_0.200000_uM (0.2μM**)Measured Percent PLD2 Activity at concentrationFloat%
8value_at_2.000000_uM (2μM**)Measured Percent PLD2 Activity at concentrationFloat%
9value_at_20.000000_uM (20μM**)Measured Percent PLD2 Activity at concentrationFloat%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: P01 ES013125

Data Table (Concise)
Classification
PageFrom: