Bookmark and Share
BioAssay: AID 588709

Late stage counterscreen assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): Luminescence-based cell-based dose response assay to identify compounds that are cytotoxic to HEK cells

Name: Late stage counterscreen assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): Luminescence-based cell-based dose response assay to identify compounds that are cytotoxic to HEK cells. ..more
_
   
 Tested Compounds
 Tested Compounds
All(31)
 
 
Active(2)
 
 
Inactive(29)
 
 
 Tested Substances
 Tested Substances
All(32)
 
 
Active(2)
 
 
Inactive(30)
 
 
 Related BioAssays
 Related BioAssays
AID: 588709
Data Source: The Scripps Research Institute Molecular Screening Center (HEK293CYTOX_INH_LUMI_1536_3XCC50 MDCSRUN)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
Deposit Date: 2011-10-27
Hold-until Date: 2012-10-27
Modify Date: 2012-10-27

Data Table ( Complete ):           View Active Data    View All Data
BioActive Compounds: 2
Related Experiments
Show more
AIDNameTypeComment
434962Fluorescence polarization-based cell-based primary high throughput screening assay to identify inhibitors of insulin-degrading enzyme (IDE)Screeningdepositor-specified cross reference: Primary screen (IDE inhibitors in singlicate)
434984Summary of probe development efforts to identify inhibitors of insulin-degrading enzyme (IDE)Summarydepositor-specified cross reference: Summary (IDE inhibitors)
435028Fluorescence polarization-based cell-based high throughput confirmation assay for inhibitors of insulin-degrading enzyme (IDE)Screeningdepositor-specified cross reference: Confirmation (IDE inhibitors in triplicate)
449730Counterscreen for IDE inhibitors: Luminescence-based cell-based high throughput assay to identify cytotoxic compounds using HEK cellsScreeningdepositor-specified cross reference: Counterscreen (Cytotoxicity in triplicate)
463220Dose Response: Fluorescence polarization-based cell-based high throughput dose response assay for inhibitors of insulin-degrading enzyme (IDE)Confirmatorydepositor-specified cross reference: Dose response (IDE inhibitors in triplicate)
463221Counterscreen for IDE inhibitors: Luminescence-based cell-based high throughput dose response assay to identify compounds that are cytotoxic to HEK cellsConfirmatorydepositor-specified cross reference: Dose response counterscreen (Cytotoxicity in triplicate)
624065Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: TR-FRET-based IDE activity assay to identify inhibitors of recombinant IDE's degradation of insulinConfirmatorydepositor-specified cross reference
624066Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence-based IDE activity assay using a fluorogenic peptide substrate (FRET1) to identify fluorescent artifactsConfirmatorydepositor-specified cross reference
624067Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence polarization-based biochemical dose-response assay for inhibitors of wild-type (WT) recombinant IDEConfirmatorydepositor-specified cross reference
624306Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence-based cysteine-free mutant IDE activity assay using a fluorogenic peptide substrate (FRET1) (reversibility)Otherdepositor-specified cross reference
624338Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence-based cysteine-free mutant IDE activity assay using a fluorogenic peptide substrate (FRET1) (reversibility) (Round 2)Otherdepositor-specified cross reference
624340Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence-based IDE activity assay using a fluorogenic peptide substrate (FRET1) to identify fluorescent artifacts (ROUND2)Confirmatorydepositor-specified cross reference
624353Late stage assay provider counterscreen for the probe development effort to identify IDE inhibitors: Fluorescence polarization-based biochemical dose-response assay for inhibitors of wild-type (WT) recombinant IDE (ROUND 2)Confirmatorydepositor-specified cross reference
588711Late stage counterscreen assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): Fluorescence polarization-based biochemical dose response assay for inhibitors of recombinant IDEConfirmatorysame project related to Summary assay
588712Late stage assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): Fluorescence polarization-based cell-based dose response assay for inhibitors of IDEConfirmatorysame project related to Summary assay
588718Late stage counterscreen assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): fluorescence polarization-based biochemical dose response assay to identify fluorescent artifacts and/or optically active compoundsConfirmatorysame project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Center Affiliation: The Scripps Research Institute (TSRI)
Assay Provider: Malcolm Leissring, Mayo Clinic College of Medicine
Network: Molecular Libraries Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1 R03 DA024888-01
Grant Proposal PI: Malcolm Leissring, Mayo Clinic College of Medicine
External Assay ID: HEK293CYTOX_INH_LUMI_1536_3XCC50 MDCSRUN

Name: Late stage counterscreen assay for the probe development effort to identify inhibitors of insulin-degrading enzyme (IDE): Luminescence-based cell-based dose response assay to identify compounds that are cytotoxic to HEK cells.

Description:

Alzheimer's disease (AD) is characterized by accumulation of amyloid beta-protein (A-beta; Abeta) in brain regions involved in memory and cognition (1). The steady-state levels of AB reflect a balance between its production via beta- and gamma-secretases and its catabolism by proteolytic degradation (2-4). Because Abeta cleavage products are less neurotoxic than intact Abeta, enzymes that cleave Abeta are of therapeutic interest for AD. In fact, upregulation of Abeta-degrading proteases can prevent AD-like pathology in beta-amyloid precursor protein (APP) transgenic mice (5), suggesting that enhancing AB degradation may be therapeutic in human AD. Insulin-degrading enzyme (IDE) is an Abeta-degrading zinc metalloprotease that requires a free thiol and bivalent cations to degrade extracellular Abeta in neurons and other cell types (6-8). The deduced sequence of IDE shares little homology to other proteinases, including cysteine, metallo-, serine, or aspartic proteases (9). Most IDE is localized inside the cell (10), where it can degrade internalized insulin (11), insulin-like growth factors I and II (12), and amylin (13), which make IDE an attractive target for type-2 diabetes. However, since IDE has also been found in the extracellular space and at the plasma membrane (6), it can function as a principal protease in Abeta catabolism (5, 14, 15). IDE secretion is not dependent upon the classical secretion pathway (16). Studies showing reduced IDE levels in human AD patients (17, 18), combined with increased brain AB levels in IDE-deficient mice (14, 15), and association studies suggesting that IDE variants may be associated with AD severity (19-23), suggest that the identification of compounds that selectively modulate IDE activity will present as important tools for the study of IDE function, AD, and diabetes.

References:

1. Miners, JS, Baig, S, Palmer, J, Palmer, LE, Kehoe, PG and Love, S, Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol, 2008. 18(2): p. 240-52.
2. Selkoe, DJ, Clearing the brain's amyloid cobwebs. Neuron, 2001. 32(2): p. 177-80.
3. Eckman, EA and Eckman, CB, Abeta-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans, 2005. 33(Pt 5): p. 1101-5.
4. Hersh, LB, The insulysin (insulin degrading enzyme) enigma. Cell Mol Life Sci, 2006. 63(21): p. 2432-4.
5. Leissring, MA, Farris, W, Chang, AY, Walsh, DM, Wu, X, Sun, X, Frosch, MP and Selkoe, DJ, Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron, 2003. 40(6): p. 1087-93.
6. Qiu, WQ, Walsh, DM, Ye, Z, Vekrellis, K, Zhang, J, Podlisny, MB, Rosner, MR, Safavi, A, Hersh, LB and Selkoe, DJ, Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem, 1998. 273(49): p. 32730-8.
7. Qiu, WQ, Ye, Z, Kholodenko, D, Seubert, P and Selkoe, DJ, Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem, 1997. 272(10): p. 6641-6.
8. Kurochkin, IV and Goto, S, Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett, 1994. 345(1): p. 33-7.
9. Affholter, JA, Fried, VA and Roth, RA, Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science, 1988. 242(4884): p. 1415-8.
10. Qiu, WQ and Folstein, MF, Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging, 2006. 27(2): p. 190-8.
11. Fawcett, J and Rabkin, R, Degradation of insulin by isolated rat renal cortical endosomes. Endocrinology, 1993. 133(4): p. 1539-47.
12. Misbin, RI and Almira, EC, Degradation of insulin and insulin-like growth factors by enzyme purified from human erythrocytes. Comparison of degradation products observed with A14- and B26-[125I]monoiodoinsulin. Diabetes, 1989. 38(2): p. 152-8.
13. Bennett, RG, Duckworth, WC and Hamel, FG, Degradation of amylin by insulin-degrading enzyme. J Biol Chem, 2000. 275(47): p. 36621-5.
14. Farris, W, Mansourian, S, Chang, Y, Lindsley, L, Eckman, EA, Frosch, MP, Eckman, CB, Tanzi, RE, Selkoe, DJ and Guenette, S, Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A, 2003. 100(7): p. 4162-7.
15. Miller, BC, Eckman, EA, Sambamurti, K, Dobbs, N, Chow, KM, Eckman, CB, Hersh, LB and Thiele, DL, Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci U S A, 2003. 100(10): p. 6221-6.
16. Zhao, J, Li, L and Leissring, MA, Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Mol Neurodegener, 2009. 4: p. 4.
17. Perez, A, Morelli, L, Cresto, JC and Castano, EM, Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res, 2000. 25(2): p. 247-55.
18. Zhao, Z, Xiang, Z, Haroutunian, V, Buxbaum, JD, Stetka, B and Pasinetti, GM, Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease. Neurobiol Aging, 2007. 28(6): p. 824-30.
19. Abraham, R, Myers, A, Wavrant-DeVrieze, F, Hamshere, ML, Thomas, HV, Marshall, H, Compton, D, Spurlock, G, Turic, D, Hoogendoorn, B, Kwon, JM, Petersen, RC, Tangalos, E, Norton, J, Morris, JC, Bullock, R, Liolitsa, D, Lovestone, S, Hardy, J, Goate, A, O'Donovan, M, Williams, J, Owen, MJ and Jones, L, Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Hum Genet, 2001. 109(6): p. 646-52.
20. Prince, JA, Feuk, L, Gu, HF, Johansson, B, Gatz, M, Blennow, K and Brookes, AJ, Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum Mutat, 2003. 22(5): p. 363-71.
21. Ertekin-Taner, N, Allen, M, Fadale, D, Scanlin, L, Younkin, L, Petersen, RC, Graff-Radford, N and Younkin, SG, Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat, 2004. 23(4): p. 334-42.
22. Bian, L, Yang, JD, Guo, TW, Sun, Y, Duan, SW, Chen, WY, Pan, YX, Feng, GY and He, L, Insulin-degrading enzyme and Alzheimer disease: a genetic association study in the Han Chinese. Neurology, 2004. 63(2): p. 241-5.
23. Vepsalainen, S, Parkinson, M, Helisalmi, S, Mannermaa, A, Soininen, H, Tanzi, RE, Bertram, L and Hiltunen, M, Insulin-degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population. J Med Genet, 2007. 44(9): p. 606-8.

Keywords:

late stage, powders, synthesized, purchased, Insulin degrading enzyme, IDE, insulysin, insulinase, beta amyloid, AB, A-beta, beta, inhibitors, inhibition, antagonists, inhibit, inhibitor, dose response, counterscreen, Alzheimer's disease, AD, diabetes, HEK cells, lumi, luminescence, luminescent, Celltiter glo, cell titer glo, cytotoxicity, cytox, viability, triplicate, HTS, high throughput screen, 1536, Scripps, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:
The purpose of this assay is to determine whether powder samples of compounds identified as possible IDE inhibitor probe candidates are non-selective due to HEK cytotoxicity. In this assay, HEK cells are incubated with test compounds, followed by determination of cell viability. The assay utilizes the CellTiter-Glo luminescent reagent to measure intracellular ATP in viable cells. Luciferase present in the reagent catalyzes the oxidation of beetle luciferin to oxyluciferin and light in the presence of cellular ATP. Well luminescence is directly proportional to ATP levels and cell viability. As designed, compounds that reduce cell viability will reduce ATP levels, luciferin oxidation and light production, resulting in decreased well luminescence. Compounds are tested in triplicate using a 10-point 1:3 dilution series starting at a nominal test concentration of 71 uM.
Protocol Summary:
HEK cells were cultured in T-175 sq cm flasks at 37 C and 95% relative humidity (RH). The growth media consisted of Dulbecco's Modified Eagle's Media (DMEM) containing 10% v/v fetal bovine serum, 1X antibiotic mix (penicillin, streptomycin, and neomycin).
Prior to the start of the assay 500 cells in a 5 uL volume of growth media were dispensed into each well of 1536-well tissue culture-treated microtiter plates. The assay was started immediately by dispensing 28 nL of test compound in DMSO (0.06% final DMSO concentration), DMSO alone, or doxorubicin (150 uM final concentration) to the appropriate wells. Next, the plates were incubated for 48 hours at 37 C (5% CO2, 95% RH). After equilibrating the plates to room temperature for 30 minutes, the assay was stopped by dispensing 5 uL of CellTiter-Glo reagent to each well, followed by incubation at room temperature for 15 minutes. Well luminescence was measured on the ViewLux plate reader.
The percent inhibition for each compound was calculated as follows:
%_Inhibition = ( 1 - ( ( Test_Compound - Median_High_Control ) / ( Median_Low_Control - Median_High_Control ) ) ) * 100
Where:
Test_Compound is defined as wells containing test compound.
Low_Control is defined as wells containing DMSO.
High_Control is defined as wells containing doxorubicin.
For each test compound, percent inhibition was plotted against compound concentration. A four parameter equation describing a sigmoidal dose-response curve was then fitted with adjustable baseline using Assay Explorer software (Symyx Technologies Inc). The reported IC50 values were generated from fitted curves by solving for the X-intercept value at the 50% inhibition level of the Y-intercept value. In cases where the highest concentration tested (i.e. 71 uM) did not result in greater than 50% inhibition, the IC50 was determined manually as greater than 71 uM.
PubChem Activity Outcome and Score:
Compounds with an IC50 greater than 10 uM were considered inactive. Compounds with an IC50 equal to or less than 10 uM were considered active. Compounds identified as active in this assay were not pursued further, as they may interfere with cell growth or survival, or affect the assay format or well detection.
Any compound with a percent activity value less than 50% at all test concentrations was assigned an activity score of zero. Any compound with a percent activity value greater than or equal to 50% at any test concentration was assigned an activity score greater than zero. Activity score was then ranked by the potency, with the most potent compounds assigned the highest activity scores.
The PubChem Activity Score range for active compounds is 100-99 and for inactive compounds 88-0.
List of Reagents:
HEK cells (supplied by Assay Provider)
Cell Titer Glo (Promega, part G75729)
Doxorubicin (Sigma Chemical, part D1515)
BSA (Sigma, part A9647)
DMEM (Invitrogen, part 11965)
Phenol-red free DMEM (Invitrogen, part 21063)
FBS (Hyclone, part SH30088.03)
Pen/Step/Neo mix (Gibco, part 15640)
1536-well plates (Greiner, part 789176)
Comment
Due to the increasing size of the MLPCN compound library, this assay may have been run as two or more separate campaigns, each campaign testing a unique set of compounds. In this case the results of each separate campaign were assigned "Active/Inactive" status based upon that campaign's specific compound activity cutoff value. All data reported were normalized on a per-plate basis. Possible artifacts of this assay can include, but are not limited to: dust or lint located in or on wells of the microtiter plate, and compounds that quench or emit luminescence within the well. All test compound concentrations reported are nominal; the specific concentration for a particular test compound may vary based upon the actual sample provided.
Categorized Comment - additional comments and annotations
From BioAssay Depositor:
Assay: CurveFit [1]: Equation: =( ( [Maximal Response] * [Concentration]^[Hill Slope] ) / ( [Inflection Point Concentration]^[Hill Slope] + [Concentration]^[Hill Slope] ) ) + [Baseline Response]
Assay: CurveFit [1]: Mask: Excluded Points
Assay: Dictionary: Version: 0.1
BAO: assay design: viability reporter: atp content
BAO: assay format: cell-based format
BAO: bioassay specification: assay biosafety level: bsl1
BAO: bioassay specification: assay measurement type: endpoint assay
BAO: bioassay specification: assay readout content: assay readout method: regular screening
BAO: bioassay specification: assay readout content: content readout type: single readout
BAO: bioassay specification: assay stage: secondary: counter screening
BAO: detection technology: luminescence: chemiluminescence
BAO: meta target: biological process target: cell death
BAO: meta target: molecular target: protein target: enzyme: protease
BAO: version: 1.4b1090
From PubChem:
Assay Format: Cell-based
Assay Cell Type: HEK
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1QualifierActivity Qualifier identifies if the resultant data IC50 came from a fitted curve or was determined manually to be less than or greater than its listed IC50 concentration.String
2IC50*The concentration at which 50 percent of the activity in the inhibitor assay is observed; (IC50) shown in micromolar.FloatμM
3LogIC50Log10 of the qualified IC50 (IC50) from the inhibitor assay in M concentrationFloat
4Hill SlopeThe variable HillSlope describes the steepness of the curve. This variable is called the Hill slope, the slope factor, or the Hill coefficient. If it is positive, the curve increases as X increases. If it is negative, the curve decreases as X increases. A standard sigmoid dose-response curve (previous equation) has a Hill Slope of 1.0. When HillSlope is less than 1.0, the curve is more shallow. When HillSlope is greater than 1.0, the curve is steeper. The Hill slope has no units.Float
5Baseline ResponseAdjustable baseline of the curve fit, minimal response value.Float
6Maximal ResponseThe maximal or asymptotic response above the baseline as concentration increases without bound.Float
7Inflection Point ConcentrationThe concentration value for the inflection point of the curve.FloatμM
8Excluded PointsFlags to indicate which of the dose-response points were excluded from analysis. (1) means the point was excluded and (0) means the point was not excluded.String
9Response RangeThe range of Y.Float
10Chi SquareA measure for the 'goodness' of a fit. The chi-square test (Snedecor and Cochran, 1989) is used to test if a sample of data came from a population with a specific distribution.Float
11RsquareThis statistic measures how successful the fit explains the variation of the data; R-square is the square of the correlation between the response values and the predicted response values.Float
12Number of DataPointsOverall number of data points of normalized percent inhibition that was used for calculations (includes all concentration points); in some cases a data point can be excluded as outlier.Integer
13Inhibition at 0.004 uM [1] (0.004μM**)Value of % inhibition at 0.004 uM inhibitor concentration; replicate [1]Float%
14Inhibition at 0.004 uM [2] (0.004μM**)Value of % inhibition at 0.004 uM inhibitor concentration; replicate [2]Float%
15Inhibition at 0.004 uM [3] (0.004μM**)Value of % inhibition at 0.004 uM inhibitor concentration; replicate [3]Float%
16Inhibition at 0.011 uM [1] (0.011μM**)Value of % inhibition at 0.011 uM inhibitor concentration; replicate [1]Float%
17Inhibition at 0.011 uM [2] (0.011μM**)Value of % inhibition at 0.011 uM inhibitor concentration; replicate [2]Float%
18Inhibition at 0.011 uM [3] (0.011μM**)Value of % inhibition at 0.011 uM inhibitor concentration; replicate [3]Float%
19Inhibition at 0.033 uM [1] (0.033μM**)Value of % inhibition at 0.033 uM inhibitor concentration; replicate [1]Float%
20Inhibition at 0.033 uM [2] (0.033μM**)Value of % inhibition at 0.033 uM inhibitor concentration; replicate [2]Float%
21Inhibition at 0.033 uM [3] (0.033μM**)Value of % inhibition at 0.033 uM inhibitor concentration; replicate [3]Float%
22Inhibition at 0.098 uM [1] (0.098μM**)Value of % inhibition at 0.098 uM inhibitor concentration; replicate [1]Float%
23Inhibition at 0.098 uM [2] (0.098μM**)Value of % inhibition at 0.098 uM inhibitor concentration; replicate [2]Float%
24Inhibition at 0.098 uM [3] (0.098μM**)Value of % inhibition at 0.098 uM inhibitor concentration; replicate [3]Float%
25Inhibition at 0.294 uM [1] (0.294μM**)Value of % inhibition at 0.294 uM inhibitor concentration; replicate [1]Float%
26Inhibition at 0.294 uM [2] (0.294μM**)Value of % inhibition at 0.294 uM inhibitor concentration; replicate [2]Float%
27Inhibition at 0.294 uM [3] (0.294μM**)Value of % inhibition at 0.294 uM inhibitor concentration; replicate [3]Float%
28Inhibition at 0.883 uM [1] (0.883μM**)Value of % inhibition at 0.883 uM inhibitor concentration; replicate [1]Float%
29Inhibition at 0.883 uM [2] (0.883μM**)Value of % inhibition at 0.883 uM inhibitor concentration; replicate [2]Float%
30Inhibition at 0.883 uM [3] (0.883μM**)Value of % inhibition at 0.883 uM inhibitor concentration; replicate [3]Float%
31Inhibition at 2.6 uM [1] (2.6μM**)Value of % inhibition at 2.6 uM inhibitor concentration; replicate [1]Float%
32Inhibition at 2.6 uM [2] (2.6μM**)Value of % inhibition at 2.6 uM inhibitor concentration; replicate [2]Float%
33Inhibition at 2.6 uM [3] (2.6μM**)Value of % inhibition at 2.6 uM inhibitor concentration; replicate [3]Float%
34Inhibition at 7.9 uM [1] (7.9μM**)Value of % inhibition at 7.9 uM inhibitor concentration; replicate [1]Float%
35Inhibition at 7.9 uM [2] (7.9μM**)Value of % inhibition at 7.9 uM inhibitor concentration; replicate [2]Float%
36Inhibition at 7.9 uM [3] (7.9μM**)Value of % inhibition at 7.9 uM inhibitor concentration; replicate [3]Float%
37Inhibition at 23.8 uM [1] (23.8μM**)Value of % inhibition at 23.8 uM inhibitor concentration; replicate [1]Float%
38Inhibition at 23.8 uM [2] (23.8μM**)Value of % inhibition at 23.8 uM inhibitor concentration; replicate [2]Float%
39Inhibition at 23.8 uM [3] (23.8μM**)Value of % inhibition at 23.8 uM inhibitor concentration; replicate [3]Float%
40Inhibition at 71.5 uM [1] (71.5μM**)Value of % inhibition at 71.5 uM inhibitor concentration; replicate [1]Float%
41Inhibition at 71.5 uM [2] (71.5μM**)Value of % inhibition at 71.5 uM inhibitor concentration; replicate [2]Float%
42Inhibition at 71.5 uM [3] (71.5μM**)Value of % inhibition at 71.5 uM inhibitor concentration; replicate [3]Float%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: 1 R03 DA024888-01

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: