Bookmark and Share
BioAssay: AID 537044

Displacement of [3H]LSD from human recombinant 5HT5A receptor

We have prepared a series of quinazolinone derivatives linked with piperazinylquinoline for the treatment of irritable bowel syndrome (IBS). Using pharmacophore analysis, we designed and synthesized compounds which bind to both serotonin receptor subtype 1A (5-HT(1A)) and subtype 3 (5-HT(3)). Quinazolinone derivatives with a sulfur atom in the linker showed high affinity in in vitro assays, but more ..
_
   
 Tested Compounds
 Tested Compounds
All(1)
 
 
Unspecified(1)
 
 
 Tested Substances
 Tested Substances
All(1)
 
 
Unspecified(1)
 
 
 Related BioAssays
 Related BioAssays
AID: 537044
Data Source: ChEMBL (684925)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: Literature, Extracted
BioAssay Version:
Deposit Date: 2011-09-18
Modify Date: 2014-08-23

Data Table ( Complete ):           View All Data
Target
Sequence: RecName: Full=5-hydroxytryptamine receptor 5A; Short=5-HT-5; Short=5-HT-5A; Short=5-HT5A; AltName: Full=Serotonin receptor 5A
Description ..   
Comment ..   

Gene:HTR5A     Conserved Domain     Related Protein 3D Structures     More BioActivity Data..
Tested Compound:
Description:
Title: Discovery of a novel 5-HT(3) antagonist/5-HT(1A) agonist 3-amino-5,6,7,8-tetrahydro-2-{4-[4-(quinolin-2-yl)piperazin-1-yl]butyl}quinazolin-4(3H)-one (TZB-30878) as an orally bioavailable agent for irritable bowel syndrome.

Abstract: We have prepared a series of quinazolinone derivatives linked with piperazinylquinoline for the treatment of irritable bowel syndrome (IBS). Using pharmacophore analysis, we designed and synthesized compounds which bind to both serotonin receptor subtype 1A (5-HT(1A)) and subtype 3 (5-HT(3)). Quinazolinone derivatives with a sulfur atom in the linker showed high affinity in in vitro assays, but low in vivo activity. Focusing on the linker to improve the pharmacokinetic profile, the sulfur atom in the linker was replaced with a methylene group. Further optimization led to the discovery of compound 17m (TZB-30878) ( J. Pharmacol. Exp. Ther. 2007 , 322 , 1315 - 1323 , Patent WO2005082887 (A1), 2005 ), a novel 5-HT(1A) agonist/5-HT(3) antagonist in the 3-aminoquinazolinone series. In in vivo functional assays, 17m dose dependently inhibited the Bezold-Jarisch reflex and induced 5-HT(1A)-mediated behaviors, and in an IBS animal model, 17m significantly inhibited stress-induced defecation. Pretreatment by WAY-100635 (5-HT(1A) antagonist) significantly attenuated but did not abolish the inhibitory effects of 17m. These results suggested that 17m exerted inhibitory effects via both 5-HT(1A) agonistic and 5-HT(3) antagonistic activities and that 17m would be useful as a therapeutic agent for IBS.
(PMID: 20931963)
Categorized Comment - additional comments and annotations
From BioAssay Depositor:
Assay Type: Binding
Target Type: Target is a single protein chain
Assay Data Source: Scientific Literature
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
1IC50*IC50 PubChem standard valueFloatμM
2IC50 activity commentIC50 activity commentString
3IC50 standard flagIC50 standard flagInteger
4IC50 qualifierIC50 qualifierString
5IC50 published valueIC50 published valueFloat10'-6 mol/L
6IC50 standard valueIC50 standard valueFloatnM

* Activity Concentration.

Data Table (Concise)
Data Table ( Complete ):     View All Data
Classification
PageFrom: