Bookmark and Share
BioAssay: AID 504943

Late stage assay provider results from the probe development effort to identify non-agonists of the peroxisome proliferator-activated receptor gamma (PPARg): TR-FRET-based biochemical dose response competitive binding lanthascreen assay for non-agonists of the PPARg

Name: Late stage assay provider results from the probe development effort to identify non-agonists of the peroxisome proliferator-activated receptor gamma (PPARg): TR-FRET-based biochemical dose response competitive binding lanthascreen assay for non-agonists of the PPARg. ..more
_
   
 Tested Compounds
 Tested Compounds
All(1)
 
 
Active(1)
 
 
 Tested Substances
 Tested Substances
All(10)
 
 
Active(9)
 
 
Inactive(1)
 
 
AID: 504943
Data Source: The Scripps Research Institute Molecular Screening Center (PPARG_NON-AG_TRFRET_0384_3XIC50 LANTHASCREEN DRUN_ROUND 2)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network, Assay Provider
Deposit Date: 2011-07-11
Hold-until Date: 2012-07-08
Modify Date: 2012-07-11

Data Table ( Complete ):           Active    All
Target
BioActive Compound: 1
Depositor Specified Assays
Show more
AIDNameTypeComment
631Primary biochemical High Throughput Screening assay for agonists of the steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPARgamma)screeningPrimary HTS in singlicate to identify SRC1 agonists.
1051Measurement of TR-FRET detection format artefact in the screen for agonists of steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPARgamma)otherCounter screen in triplicate to identify possible fluorescent artifacts.
1300Confirmation biochemical High Throughput Screening assay for agonists of the steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPARgamma)screeningConfirmation of hit activity in triplicate.
1319Dose response biochemical High Throughput Screening assay for agonists of the steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPARgamma)confirmatoryTitration assays in triplicate to determine potency of selective compounds.
1679TR-FRET dose response biochemical High Throughput Screening assay for agonists of the steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPAR gamma): non-selective agonistsconfirmatoryTitration assays in triplicate to determine potency of non-selective compounds.
504452Luminescence-based cell-based primary high throughput screening assay to identify partial agonists of the peroxisome proliferator-activated receptor gamma (PPARg)screeningPrimary screen (PPARG partial agonists in duplicate)
504447Luminescence-based cell-based assay provider high throughput dose response assay for partial agonists of the peroxisome proliferator-activated receptor gamma (PPARg)confirmatoryCBI Dose response (PPARG partial agonists in triplicate)
504453Fluorescence-polarization-based biochemical polarscreen dose response binding assay for partial agonists of the peroxisome proliferator-activated receptor gamma (PPARg)confirmatoryDose response Polarscreen (PPARG partial agonists in triplicate)
504446TR-FRET-based biochemical dose response competitive binding lanthascreen assay for partial agonists of the peroxisome proliferator-activated receptor gamma (PPARg)confirmatoryDose response Lanthascreen (PPARG partial agonists in triplicate)
1808Summary of probe development efforts to identify agonists of the steroid receptor coactivator 1 (SRC-1) recruitment by the peroxisome proliferator-activated receptor gamma (PPAR gamma)summarySummary (agonists of SRC-1 recruitment by PPAR gamma)
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRISMC)
Center Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Patrick Griffin, TSRI
Network: Molecular Library Probe Production Center Network (MLPCN)
Grant Proposal Number: MH084512
Grant Proposal PI: Patrick Griffin, TSRI
External Assay ID: PPARG_NON-AG_TRFRET_0384_3XIC50 LANTHASCREEN DRUN_ROUND 2

Name: Late stage assay provider results from the probe development effort to identify non-agonists of the peroxisome proliferator-activated receptor gamma (PPARg): TR-FRET-based biochemical dose response competitive binding lanthascreen assay for non-agonists of the PPARg.

Description: Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and are lipid sensors functioning as ligand-dependent transcription factors regulating gene expression patterns of diverse biological processes (1, 2). PPARs play a critical role in metabolic processes such as glucose metabolism, lipid metabolism, and have been implicated in anti-atherogenic, anti-inflammatory as well as anti-hypertensive functions (3). Like other nuclear receptors, PPARs act as agonist-activated transcription factors, regulating specific target gene transcription. PPARs have been shown to respond to small molecules and are well-documented for therapeutic actions triggered by synthetic agonists (4-6). Among the three isoforms of PPAR identified, PPAR gamma (NR1C3) is implicated in several important disorders such as atherosclerosis, diabetes, obesity and cancer, providing strong justification for the search for specific PPARg agonists that can be used to treat these pathologies. However, the clinical use of PPARg agonists has been associated with adverse effects that are mainly caused by the concomitant activation of various target genes implicated in different physiological pathways. These side effects include weight gain through increased adipogenesis, renal fluid retention and plasma volume expansion, as well as toxic effects in the liver (7). To design safer and more selective PPARg agonists, the different physiological pathways triggered by PPARg activation have to be decoupled. Recently, new classes of PPARg ligands, the so called selective PPARg modulators (SPPARgMs), have been developed. These compounds respond as partial agonists in a GAL-4 luciferase assay and are assumed to display a different binding mode in the PPARg subunit compared to the full agonist, glitazones (8). Selective recruitment of transcriptional coactivators by partial agonists has also been demonstrated, suggesting that different PPARg binding mode leading to a distinct coactivator recruitment profile may explain the change in gene expression patterns compared to those of full agonists (glitazones). Further, due to their improved pharmacodynamic properties, there is substantial interest and need to develop insulin-sensitizing PPARg modulators with minimal classical activation of PPARg and reduced side effects, while maintaining robust antidiabetic efficacy (9-11). The objective of this project is to identify compounds that bind to PPARgamma and do not induce PPARg transactivation (12).

References:

1. Chawla, A., et al., Nuclear receptors and lipid physiology: Opening the X-files. Science, 2001. 294(5548): p. 1866-1870.
2. Krey, G., et al., Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Molecular Endocrinology, 1997. 11(6): p. 779-791.
3. Bishop-Bailey, D., T. Hla, and T.D. Warner, Intimal smooth muscle cells as a target for peroxisome proliferator-activated receptor-gamma ligand therapy. Circ Res, 2002. 91(3): p. 210-7.
4. Evans, R.M., G.D. Barish, and Y.X. Wang, PPARs and the complex journey to obesity. Nat Med, 2004. 10(4): p. 355-61.
5. Staels, B., et al., Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 1998. 98(19): p. 2088-93.
6. Barish, G.D., V.A. Narkar, and R.M. Evans, PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest, 2006. 116(3): p. 590-7.
7. Berger, J.P., T.E. Akiyama, and P.T. Meinke, PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci, 2005. 26(5): p. 244-51.
8. Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem. 1999 Mar 5;274(10):6718-25.B7
9. Berger JP, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K, Elbrecht A, Johnson BA, Zhou G, Doebber TW, Biswas C, Parikh M, Sharma N, Tanen MR, Thompson GM, Ventre J, Adams AD, Mosley R, Surwit RS, Moller DE.Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol. 2003 Apr;17(4):662-76.
10. Minoura H, Takeshita S, Ita M, Hirosumi J, Mabuchi M, Kawamura I, Nakajima S, Nakayama O, Kayakiri H, Oku T, Ohkubo-Suzuki A, Fukagawa M, Kojo H, Hanioka K, Yamasaki N, Imoto T, Kobayashi Y, Mutoh S. Eur J Pharmacol. 2004 Jun 28;494(2-3):273-81. Pharmacological characteristics of a novel nonthiazolidinedione insulin sensitizer, FK614.
11. Vidovic D, Busby SA, Griffin PR, Schurer SC. A combined ligand- and structure-based virtual screening protocol identifies subuM PPARg partial agonists. ChemMedChem. 2011 Jan 3;6(1):94-103.
12. Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M, Griffin PR, Spiegelman BM. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010 Jul 22;466(7305):451-6.

Keywords:

PPAR gamma, PPARg, PPARG1, PPARG2, PPAR, peroxisome proliferator-activated receptor gamma, partial agonist, non-agonist, non agonist, competition, inhibit binding, assay provider, CBI, center based initiative, center-based, biochemical, fluorescence, lantha, lanthascreen, FRET, TRFRET, TR-FRET, competitive, selective, nuclear receptor, tumor, cancer, dose response, 384, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this assay is to confirm compounds that can directly bind to PPARg through competition with a fluorescently labeled high affinity PPARg compound. The fluorescent ligand when bound to the PPARg LBD protein is in close proximity to the Tb-anti PPARg antibody bound to the N-terminal His tag on the PPARg LBD. In the absence of test compound, this provides a robust TR-FRET signal which is the ratio of the fluorescein emission at 520 nm and the Tb emission at 490nm. When test compound displaces the fluorescently labeled control compound, it causes a loss of the TR-FRET signal which is proportional to how much of the compound is displaced. This assay allows for the separation of compounds positive in the cell-based luminescence assays that are working through direct binding to PPARg versus compounds modulating PPARg transactivation activity through indirect mechanisms. In addition, it provides a more sensitive measurement of compound binding to PPARg than the Polarscreen PPARg Competitor assay based on head to head comparisons with positive controls such as Rosiglitazone.

Protocol Summary:

This assay is a commercially available assay from Invitrogen (http://products.invitrogen.com/ivgn/product/PV4894) and was conducted per manufacturer's instructions. Compounds that were actives from the Polarscreen PPARg competitor assay were tested in this assay in dose response using concentrations in the range 1 uM to 0.000033 uM.

For every dose, FRET ratio was determined as follows:

FRET_ratio = Signal Test_Compound_(520nm) / Signal Test compound_(490nm)

Where:

Test_Compound is defined as wells containing test compound.

FRET ratio was then plotted versus compound concentration and IC50's were calculated using GraphPad Prism.

As a positive control, Rosiglitazone was tested in the same dose response experiment and calculated IC50 values were compared to values in literature as an assessment of assay robustness.

PubChem Activity Score and Outcome:

Any compound with an IC50 value less than 200 nM is active. Also, compounds with an average FRET ratio equal to or greater than 1.2 or less than or equal to 0.8 at 1 uM (highest dose) were considered active in this assay.

Activity score was then ranked by the potency of the compounds with fitted curves, with the most potent compounds assigned the highest activity scores.

The PubChem Activity Score range for active compounds is 100-1, and for inactive compounds 0-0.

List of Reagents:

Lanthascreen TR-FRET PPARg Competitive Binding Assay, (Invitrogen, Part: PV4894)
384-well plates (Greiner 384, small volume, Black Part: 784076)
Comment
This assay was performed by the assay provider.
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1IC50*The concentration at which 50 percent of the activity in the antagonist assay is observed; (IC50) shown in micromolar.FloatμM
2FRET Ratio at 0.000033 uM [1] (3.3e-05μM**)FRET Ratio 520 nm/ 490 nm at at 0.000033 uM concentration; replicate [1]Float%
3FRET Ratio at 0.000033 uM [2] (3.3e-05μM**)FRET Ratio 520 nm/ 490 nm at at 0.000033 uM concentration; replicate [2]Float%
4FRET Ratio at 0.000033 uM [3] (3.3e-05μM**)FRET Ratio 520 nm/ 490 nm at at 0.000033 uM concentration; replicate [3]Float%
5FRET Ratio at 0.000033 uM [4] (3.3e-05μM**)FRET Ratio 520 nm/ 490 nm at at 0.000033 uM concentration; replicate [4]Float%
6FRET Ratio at 0.000111 uM [1] (0.000111μM**)FRET Ratio 520 nm/ 490 nm at at 0.000111 uM concentration; replicate [1]Float%
7FRET Ratio at 0.000111 uM [2] (0.000111μM**)FRET Ratio 520 nm/ 490 nm at at 0.000111 uM concentration; replicate [2]Float%
8FRET Ratio at 0.000111 uM [3] (0.000111μM**)FRET Ratio 520 nm/ 490 nm at at 0.000111 uM concentration; replicate [3]Float%
9FRET Ratio at 0.000111 uM [4] (0.000111μM**)FRET Ratio 520 nm/ 490 nm at at 0.000111 uM concentration; replicate [4]Float%
10FRET Ratio at 0.000333 uM [1] (0.000333μM**)FRET Ratio 520 nm/ 490 nm at at 0.000333 uM concentration; replicate [1]Float%
11FRET Ratio at 0.000333 uM [2] (0.000333μM**)FRET Ratio 520 nm/ 490 nm at at 0.000333 uM concentration; replicate [2]Float%
12FRET Ratio at 0.000333 uM [3] (0.000333μM**)FRET Ratio 520 nm/ 490 nm at at 0.000333 uM concentration; replicate [3]Float%
13FRET Ratio at 0.000333 uM [4] (0.000333μM**)FRET Ratio 520 nm/ 490 nm at at 0.000333 uM concentration; replicate [4]Float%
14FRET Ratio at 0.001 uM [1] (0.001μM**)FRET Ratio 520 nm/ 490 nm at at 0.001 uM concentration; replicate [1]Float%
15FRET Ratio at 0.001 uM [2] (0.001μM**)FRET Ratio 520 nm/ 490 nm at at 0.001 uM concentration; replicate [2]Float%
16FRET Ratio at 0.001 uM [3] (0.001μM**)FRET Ratio 520 nm/ 490 nm at at 0.001 uM concentration; replicate [3]Float%
17FRET Ratio at 0.001 uM [4] (0.001μM**)FRET Ratio 520 nm/ 490 nm at at 0.001 uM concentration; replicate [4]Float%
18FRET Ratio at 0.003 uM [1] (0.003μM**)FRET Ratio 520 nm/ 490 nm at at 0.003 uM concentration; replicate [1]Float%
19FRET Ratio at 0.003 uM [2] (0.003μM**)FRET Ratio 520 nm/ 490 nm at at 0.003 uM concentration; replicate [2]Float%
20FRET Ratio at 0.003 uM [3] (0.003μM**)FRET Ratio 520 nm/ 490 nm at at 0.003 uM concentration; replicate [3]Float%
21FRET Ratio at 0.003 uM [4] (0.003μM**)FRET Ratio 520 nm/ 490 nm at at 0.003 uM concentration; replicate [4]Float%
22FRET Ratio at 0.011 uM [1] (0.011μM**)FRET Ratio 520 nm/ 490 nm at at 0.011 uM concentration; replicate [1]Float%
23FRET Ratio at 0.011 uM [2] (0.011μM**)FRET Ratio 520 nm/ 490 nm at at 0.011 uM concentration; replicate [2]Float%
24FRET Ratio at 0.011 uM [3] (0.011μM**)FRET Ratio 520 nm/ 490 nm at at 0.011 uM concentration; replicate [3]Float%
25FRET Ratio at 0.011 uM [4] (0.011μM**)FRET Ratio 520 nm/ 490 nm at at 0.011 uM concentration; replicate [4]Float%
26FRET Ratio at 0.033 uM [1] (0.033μM**)FRET Ratio 520 nm/ 490 nm at at 0.033 uM concentration; replicate [1]Float%
27FRET Ratio at 0.033 uM [2] (0.033μM**)FRET Ratio 520 nm/ 490 nm at at 0.033 uM concentration; replicate [2]Float%
28FRET Ratio at 0.033 uM [3] (0.033μM**)FRET Ratio 520 nm/ 490 nm at at 0.033 uM concentration; replicate [3]Float%
29FRET Ratio at 0.033 uM [4] (0.033μM**)FRET Ratio 520 nm/ 490 nm at at 0.033 uM concentration; replicate [4]Float%
30FRET Ratio at 0.111 uM [1] (0.111μM**)FRET Ratio 520 nm/ 490 nm at at 0.111 uM concentration; replicate [1]Float%
31FRET Ratio at 0.111 uM [2] (0.111μM**)FRET Ratio 520 nm/ 490 nm at at 0.111 uM concentration; replicate [2]Float%
32FRET Ratio at 0.111 uM [3] (0.111μM**)FRET Ratio 520 nm/ 490 nm at at 0.111 uM concentration; replicate [3]Float%
33FRET Ratio at 0.111 uM [4] (0.111μM**)FRET Ratio 520 nm/ 490 nm at at 0.111 uM concentration; replicate [4]Float%
34FRET Ratio at 0.333 uM [1] (0.333μM**)FRET Ratio 520 nm/ 490 nm at at 0.333 uM concentration; replicate [1]Float%
35FRET Ratio at 0.333 uM [2] (0.333μM**)FRET Ratio 520 nm/ 490 nm at at 0.333 uM concentration; replicate [2]Float%
36FRET Ratio at 0.333 uM [3] (0.333μM**)FRET Ratio 520 nm/ 490 nm at at 0.333 uM concentration; replicate [3]Float%
37FRET Ratio at 0.333 uM [4] (0.333μM**)FRET Ratio 520 nm/ 490 nm at at 0.333 uM concentration; replicate [4]Float%
38FRET Ratio at 1 uM [1] (1μM**)FRET Ratio 520 nm/ 490 nm at at 1 uM concentration; replicate [1]Float%
39FRET Ratio at 1 uM [2] (1μM**)FRET Ratio 520 nm/ 490 nm at at 1 uM concentration; replicate [2]Float%
40FRET Ratio at 1 uM [3] (1μM**)FRET Ratio 520 nm/ 490 nm at at 1 uM concentration; replicate [3]Float%
41FRET Ratio at 1 uM [4] (1μM**)FRET Ratio 520 nm/ 490 nm at at 1 uM concentration; replicate [4]Float%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: MH084512

Data Table (Concise)
Classification
PageFrom: