Bookmark and Share
BioAssay: AID 463250

Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1)

Name: Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1). ..more
_
   
 Tested Compounds
 Tested Compounds
All(85)
 
 
Active(54)
 
 
Inactive(31)
 
 
 Tested Substances
 Tested Substances
All(85)
 
 
Active(54)
 
 
Inactive(31)
 
 
AID: 463250
Data Source: The Scripps Research Institute Molecular Screening Center (MCHR1_ANT_FLUO8_384_3X%IC50)
BioAssay Type: Confirmatory, Concentration-Response Relationship Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2010-09-21
Hold-until Date: 2011-04-14
Modify Date: 2011-04-14

Data Table ( Complete ):           View Active Data    View All Data
Target
BioActive Compounds: 54
Related Experiments
Show more
AIDNameTypeProbeComment
1861Fluorescence-based primary cell-based high throughput screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7).Screening depositor-specified cross reference: Primary screen (GPR7 antagonists in singlicate)
1880Summary of probe development efforts to identify antagonists of the G-protein coupled receptor 7 (GPR7).Summary2 depositor-specified cross reference: Summary (GPR7 antagonists)
1952Fluorescence-based confirmation cell-based high throughput screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7).Screening depositor-specified cross reference: Confimration screen (GPR7 antagonists in triplicate)
2148Fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based high throughput screening assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1).Screening depositor-specified cross reference: Counterscreen (MCHR1 antagonists in triplicate)
2251Fluorescence-based dose response cell-based high throughput screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7).Confirmatory depositor-specified cross reference: Dose response (GPR7 antagonists in triplicate)
2257Fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based high throughput dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1).Confirmatory depositor-specified cross reference: Dose response counterscreen (MCHR1 antagonists in triplicate)
485339Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7): Intracellular calcium releaseConfirmatory depositor-specified cross reference
504401Late-stage counterscreen panel assay for GPR7 antagonists: Ricerca HitProfilingScreen + CYP450Other depositor-specified cross reference
504868Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7) Set 2Confirmatory depositor-specified cross reference
504886Late-stage results from the probe development effort to identify antagonists of the G-protein coupled receptor 7 (GPR7): luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of antagonist compounds Set 2Confirmatory depositor-specified cross reference
504889Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1) Set 2Confirmatory depositor-specified cross reference
540345Late-stage counterscreen panel assay for GPR7 antagonists: Ricerca HitProfilingScreen + CYP450: Set 2Other depositor-specified cross reference
540365Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7) Set 3Confirmatory depositor-specified cross reference
540371Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1) Set 3Confirmatory depositor-specified cross reference
588326Late-stage results from the probe development effort to identify antagonists of the G-protein coupled receptor 7 (GPR7): luminescence-based cell-based dose response counterscreen assay to determine cytotoxicity of antagonist compounds Set 3Confirmatory depositor-specified cross reference
588562Late-stage fluorescence-based cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7): percent inhibitionOther depositor-specified cross reference
588563Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1) Set 5Confirmatory depositor-specified cross reference
588564Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7) Set 4Confirmatory depositor-specified cross reference
588566Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7) Set 5Confirmatory depositor-specified cross reference
588568Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1) Set 4Confirmatory depositor-specified cross reference
588581Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1) Set 6Confirmatory depositor-specified cross reference
588583Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7) Set 6Confirmatory depositor-specified cross reference
463251Late-stage fluorescence-based dose response cell-based screening assay to identify antagonists of the G-protein coupled receptor 7 (GPR7)Confirmatory same project related to Summary assay
463253Late-stage luminescence-based cell-based dose response assay to identify antagonists of the G-protein coupled receptor 7 (GPR7): Cytotoxicity assayConfirmatory same project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: Olivier Civelli, University of California, Irvine
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1-R03-DA026557-01
Grant Proposal PI: Olivier Civelli
External Assay ID: MCHR1_ANT_FLUO8_384_3X%IC50

Name: Late-stage fluorescence-based counterscreen for antagonists of the G-protein coupled receptor 7 (GPR7): cell-based dose response assay to identify antagonists of the melanin-concentrating hormone receptor 1 (MCHR1).

Description:

Heterotrimeric G-protein coupled receptors (GPCRs) are major targets for disease therapeutics, due in part to their broad tissue distribution, structural diversity, varied modes of action, and disease-associated mutations (1-4). For example, targeting of opiod receptors by opiates such as morphine is a widespread clinical application for GPCR modulation in pain management. The recently de-orphanized GPR7 (5) is localized predominantly in the cerebellum and prefrontal cortex (6), with additional expression in the pituitary, hippocampus, amygdala, and spinal cord (7-9). GPR7 is highly conserved in humans and rodents (6), and exhibits structural features of both GPCRs and somatostatin receptors (7). Studies identifying the energy-regulating neuropeptides Neuropeptide W (NPW) and Neuropeptide B (NPB) as endogenous ligands of GPR7 (5, 10), and the development of hyperphagia and obesity in male GPR7 knockout mice (11, 12), implicate GPR7 in feeding behavior. Additional studies identifying GPR7 expression in peripheral Schwann cells (13) and increased GPR7 expression in rat models and human patients with inflammation-associated neuropathic pain (11, 13), suggest a role for GPR7 in mediating the inflammatory pain response. The identification of modulators of GPR7 will provide useful tools to elucidate the diverse roles of this receptor in central neuropeptide signaling and nociception in general.

References:

1. Pan, H.L., Wu, Z.Z., Zhou, H.Y., Chen, S.R., Zhang, H.M., and Li, D.P., Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther, 2008. 117(1): p. 141-61.
2. Lagerstrom, M.C. and Schioth, H.B., Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov, 2008. 7(4): p. 339-57.
3. Thompson, M.D., Cole, D.E., and Jose, P.A., Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol Biol, 2008. 448: p. 77-107.
4. Bosier, B. and Hermans, E., Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol Sci, 2007. 28(8): p. 438-46.
5. Tanaka, H., Yoshida, T., Miyamoto, N., Motoike, T., Kurosu, H., Shibata, K., Yamanaka, A., Williams, S.C., Richardson, J.A., Tsujino, N., Garry, M.G., Lerner, M.R., King, D.S., O'Dowd, B.F., Sakurai, T., and Yanagisawa, M., Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci U S A, 2003. 100(10): p. 6251-6.
6. O'Dowd, B.F., Scheideler, M.A., Nguyen, T., Cheng, R., Rasmussen, J.S., Marchese, A., Zastawny, R., Heng, H.H., Tsui, L.C., Shi, X., and et al., The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics, 1995. 28(1): p. 84-91.
7. Brezillon, S., Lannoy, V., Franssen, J.D., Le Poul, E., Dupriez, V., Lucchetti, J., Detheux, M., and Parmentier, M., Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J Biol Chem, 2003. 278(2): p. 776-83.
8. Singh, G., Maguire, J.J., Kuc, R.E., Fidock, M., and Davenport, A.P., Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res, 2004. 1017(1-2): p. 222-6.
9. Lee, D.K., Nguyen, T., Porter, C.A., Cheng, R., George, S.R., and O'Dowd, B.F., Two related G protein-coupled receptors: the distribution of GPR7 in rat brain and the absence of GPR8 in rodents. Brain Res Mol Brain Res, 1999. 71(1): p. 96-103.
10. Fujii, R., Yoshida, H., Fukusumi, S., Habata, Y., Hosoya, M., Kawamata, Y., Yano, T., Hinuma, S., Kitada, C., Asami, T., Mori, M., Fujisawa, Y., and Fujino, M., Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem, 2002. 277(37): p. 34010-6.
11. Kelly, M.A., Beuckmann, C.T., Williams, S.C., Sinton, C.M., Motoike, T., Richardson, J.A., Hammer, R.E., Garry, M.G., and Yanagisawa, M., Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci U S A, 2005. 102(28): p. 9942-7.
12. Ishii, M., Fei, H., and Friedman, J.M., Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10540-5.
13. Zaratin, P.F., Quattrini, A., Previtali, S.C., Comi, G., Hervieu, G., and Scheideler, M.A., Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Mol Cell Neurosci, 2005. 28(1): p. 55-63.
14. Qu, D., Ludwig, D.S., Gammeltoft, S., Piper, M., Pelleymounter, M.A., Cullen, M.J., Mathes, W.F., Przypek, R., Kanarek, R., and Maratos-Flier, E., A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 1996. 380(6571): p. 243-7.
15. Bradley, R.L., Mansfield, J.P., Maratos-Flier, E., and Cheatham, B., Melanin-concentrating hormone activates signaling pathways in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 2002. 283(3): p. E584-92.
16. Ludwig, D.S., Tritos, N.A., Mastaitis, J.W., Kulkarni, R., Kokkotou, E., Elmquist, J., Lowell, B., Flier, J.S., and Maratos-Flier, E., Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest, 2001. 107(3): p. 379-86.

Keywords:

Late stage, late stage AID, powders, GPR7, NPBWR1, neuropeptides B/W receptor, G-protein coupled receptor 7, MCHR1, melanin-concentrating hormone receptor 1, GPR24, pain, feeding, counterscreen, dose response, 384, antagonist, antagonism, inhibitor, inhibition, fluorescence, calcium, Fluo-8, fluorescence, dye, plate-based, cell-based, Scripps, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this assay is to determine dose response for a set of synthesized compounds in a 384-well format counterscreen assay for antagonism of the melanin-concentrating hormone receptor 1 (MCHR1). MCHR1 (GPR24) is the receptor for MCH, a cyclic hypothalamic neuropeptide that promotes food intake (14), increases leptin and insulin release (15), and modulates energy metabolism (16). This assay employs HEK cells stably co-transfected with human MCHR1 and a chimeric Gaqi3. Cells are treated with test compounds followed by measurement of intracellular calcium as monitored by the FLUO-8 fluorescent, cell permeable calcium indicator dye. As designed, compounds that act as human MCHR1 antagonists will decrease calcium mobilization, resulting in decreased relative fluorescence of the indicator dye, and thus decreased well fluorescence. Test compounds were assayed in triplicate in an 8-point 1:3 dilution series starting at a nominal test concentration of 20 uM.

Protocol Summary:

The hMCHR1 HEK293T/Gqi3 cell line was routinely cultured in T-75 sq cm flasks at 37 C and 95% relative humidity (RH). The growth media consisted of Dulbecco's Modified Eagle's Media (DMEM) supplemented with 10% v/v heat-inactivated qualified fetal bovine serum, 25 mM HEPES, 200 ug/mL Hygromycin-B, 100 ug/mL Zeocin, 200 ug/mL Geneticin and 1X antibiotic mix (penicillin, streptomycin, and neomycin).

The day before the assay, 10,000 cells in 3 uL of growth media were seeded into each well of 384 well microtiter plates and allowed to incubate at 37 C, 5% CO2, and 95 % RH for 23 hours. Next, 25 uL of the fluorogenic Fluo-8 intracellular calcium indicator mixture with 1 mM trypan red plus (prepared according to the manufacturer's protocol) was added to each well. After incubation for 50 minutes at 37 C, 5% CO2, and 95 % RH, 100 nL of test compound in DMSO, or DMSO alone, were dispensed to the appropriate wells. The assay was started after an additional 15-minute incubation at room temperature, by performing a basal read of plate fluorescence (470-495 nm excitation and 515-575 nm emission) for 5 seconds on the FLIPR Tetra (Molecular Devices). Next, 5.5 nL of MCH peptide agonist (30 nM final concentration) in FLIPR buffer (HBSS/20 mM Hepes/0.1% BSA) were dispensed to the appropriate wells. Then a real time fluorescence measurement was immediately performed for the remaining 180 seconds of the assay.

Selected datapoints were not included in the calculations because they were outliers. A ratio for each well was calculated to normalize assay data, according to the following mathematical expression:

Ratio = I_Max / I_Min

Where:

I_Max represents the maximum measured fluorescence emission intensity over the 185 second read.
I_Min represents the minimum (basal) measured fluorescence emission intensity before compound was added.

Percent inhibition was calculated from the median ratio as follows:

% Inhibition = ( 1 - ( ( Ratio_Test_Compound - Median_Ratio_High_Control ) / ( Median_Ratio_Low_Control - Median_Ratio_High_Control ) ) ) * 100

Where:

Test_Compound is defined as wells containing test compound.
Low_Control is defined as wells containing DMSO, MCH peptide.
High_Control is defined as wells containing DMSO.

A few data points were not collected due to liquid handling issues. For each test compound, percent inhibition was plotted against compound concentration. The reported IC50 values were generated from fitted curves by solving for the X-intercept value at the 50% inhibition level of the Y-intercept value. In cases where the highest concentration tested (i.e. 20 uM) did not result in greater than 50% inhibition, the IC50 was determined manually as greater than 20 uM.

PubChem Activity Outcome and Score:

Compounds with an IC50 greater than 10 uM were considered inactive. Compounds with an IC50 equal to or less than 10 uM were considered active.

Any compound with a percent activity value < 50% at all test concentrations was assigned an activity score of zero. Any compound with a percent activity value >= 50% at any test concentration was assigned an activity score greater than zero. Activity score was then ranked by the potency of the compounds with fitted curves, with the most potent compounds assigned the highest activity scores.

The PubChem Activity Score range for active compounds is 100-50, and for inactive compounds 47-0.

List of Reagents:

hMCHR1 HEK293T/Gqi3 cell line (provided by Assay Provider)
Fluo-8 No Wash Calcium Assay Kit (ABD Bioquest, part 36316)
Trypan red plus (ABD Bioquest, part 2456)
DMEM (Invitrogen, part 11965)
Geneticin (Invitrogen, part 10131-027)
Hygromycin-B (Invitrogen, part 10687-010)
Zeocin (Invitrogen, part 46-0509)
Trypsin-EDTA solution (Invitrogen, part 25200-056)
Fetal Bovine Serum (Invitrogen, part 26140-079)
100X Penicillin-Streptomycin-Neomycin mix (Invitrogen, part 15640-055)
T-75 tissue culture flasks (NUNC, part 178905)
384-well plates (Greiner, part 788092)
Melanin-Concentrating Hormone (MCH) (Human, Mouse, Rat) (Phoenix Pharmaceuticals, part 070-47)
Comment
Possible artifacts of this assay can include, but are not limited to: dust or lint located in or on wells of the microtiter plate, compounds that non-specifically modulate cAMP and CNG activity or membrane potential, and compounds that quench or emit fluorescence within the well. This assay was performed with compounds synthesized as powders.
Result Definitions
Show more
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1QualifierActivity Qualifier identifies if the resultant data IC50 came from a fitted curve or was determined manually to be less than or greater than its listed IC50 concentration.String
2IC50*The concentration at which 50 percent of the activity in the inhibitor assay is observed; (IC50) shown in micromolar.FloatμM
3Inhibition at 20 uM [1] (20μM**)Value of %inhibition at 20 micromolar inhibitor concentration; replicate one.Float%
4Inhibition at 20 uM [2] (20μM**)Value of %inhibition at 20 micromolar inhibitor concentration; replicate two.Float%
5Inhibition at 20 uM [3] (20μM**)Value of %inhibition at 20 micromolar inhibitor concentration; replicate three.Float%
6Inhibition at 6.7 uM [1] (6.7μM**)Value of %inhibition at 6.7 micromolar inhibitor concentration; replicate one.Float%
7Inhibition at 6.7 uM [2] (6.7μM**)Value of %inhibition at 6.7 micromolar inhibitor concentration; replicate two.Float%
8Inhibition at 6.7 uM [3] (6.7μM**)Value of %inhibition at 6.7 micromolar inhibitor concentration; replicate three.Float%
9Inhibition at 2.2 uM [1] (2.2μM**)Value of %inhibition at 2.2 micromolar inhibitor concentration; replicate one.Float%
10Inhibition at 2.2 uM [2] (2.2μM**)Value of %inhibition at 2.2 micromolar inhibitor concentration; replicate two.Float%
11Inhibition at 2.2 uM [3] (2.2μM**)Value of %inhibition at 2.2 micromolar inhibitor concentration; replicate three.Float%
12Inhibition at 0.741 uM [1] (0.741μM**)Value of %inhibition at 0.741 micromolar inhibitor concentration; replicate one.Float%
13Inhibition at 0.741 uM [2] (0.741μM**)Value of %inhibition at 0.741 micromolar inhibitor concentration; replicate two.Float%
14Inhibition at 0.741 uM [3] (0.741μM**)Value of %inhibition at 0.741 micromolar inhibitor concentration; replicate three.Float%
15Inhibition at 0.247 uM [1] (0.247μM**)Value of %inhibition at 0.247 micromolar inhibitor concentration; replicate one.Float%
16Inhibition at 0.247 uM [2] (0.247μM**)Value of %inhibition at 0.247 micromolar inhibitor concentration; replicate two.Float%
17Inhibition at 0.247 uM [3] (0.247μM**)Value of %inhibition at 0.247 micromolar inhibitor concentration; replicate three.Float%
18Inhibition at 0.082 uM [1] (0.082μM**)Value of %inhibition at 0.082 micromolar inhibitor concentration; replicate one.Float%
19Inhibition at 0.082 uM [2] (0.082μM**)Value of %inhibition at 0.082 micromolar inhibitor concentration; replicate two.Float%
20Inhibition at 0.082 uM [3] (0.082μM**)Value of %inhibition at 0.082 micromolar inhibitor concentration; replicate three.Float%
21Inhibition at 0.027 uM [1] (0.027μM**)Value of %inhibition at 0.027 micromolar inhibitor concentration; replicate one.Float%
22Inhibition at 0.027 uM [2] (0.027μM**)Value of %inhibition at 0.027 micromolar inhibitor concentration; replicate two.Float%
23Inhibition at 0.027 uM [3] (0.027μM**)Value of %inhibition at 0.027 micromolar inhibitor concentration; replicate three.Float%
24Inhibition at 0.0091 uM [1] (0.0091μM**)Value of %inhibition at 0.0091 micromolar inhibitor concentration; replicate one.Float%
25Inhibition at 0.0091 uM [2] (0.0091μM**)Value of %inhibition at 0.0091 micromolar inhibitor concentration; replicate two.Float%
26Inhibition at 0.0091 uM [3] (0.0091μM**)Value of %inhibition at 0.0091 micromolar inhibitor concentration; replicate three.Float%

* Activity Concentration. ** Test Concentration.
Additional Information
Grant Number: 1-R03-DA026557-01

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
Classification
PageFrom: