Bookmark and Share
BioAssay: AID 434966

Summary of the probe development effort to identify inhibitors of the Plasmodium falciparum M1- Family Alanyl Aminopeptidase (M1AAP)

Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia ..more
_
   
AID: 434966
Data Source: The Scripps Research Institute Molecular Screening Center (M1AAP_INH_SUMMARY)
BioAssay Type: Summary, Candidate Probes/Leads with Supporting Evidence
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2010-06-03
Modify Date: 2012-05-29
Target
Related Experiments
Show more
AIDNameTypeComment
1445Inhibitors of Plasmodium falciparum M1- Family Alanyl Aminopeptidase (M1AAP)Confirmatorydepositor-specified cross reference: Dose response primary screen (M1AAP inhibitors in triplicate)
2214Counterscreen for inhibitors of M1 and M17 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Cathepsin L proteinase (CTSL1).Confirmatorydepositor-specified cross reference: Dose response counterscreen (CTSL1 inhibitors in triplicate)
2215Counterscreen for inhibitors of M1 and M17 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).Confirmatorydepositor-specified cross reference: Dose response counterscreen (PFM18AAP inhibitors in triplicate)
463209Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (M1AAP): radiolabel-based cell-based assay to identify compounds that inhibit P. falciparum growth in RBCsOtherdepositor-specified cross reference: Counterscreen (P. falciparum growth inhibitors in triplicate)
492976Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (PfM1AAP): fluorescence-based biochemical assay to identify inhibitors of malaria cell lysateScreeningdepositor-specified cross reference: Late stage screen (malaria cell lysate inhibitors in singlicate)
492978Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (PfM1AAP): fluorescence-based biochemical assay to identify inhibitors of rPfM1AAPScreeningdepositor-specified cross reference: Late stage screen (rPfM1AAP inhibitors in singlicate)
588682Counterscreen for inhibitors of PFM1AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP)Confirmatorydepositor-specified cross reference
588686QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (PFM1AAP)Confirmatorydepositor-specified cross reference
588687Counterscreen for inhibitors of PFM1 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP)Confirmatorydepositor-specified cross reference
588717Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit Plasmodium falciparum M1 Aspartyl Aminopeptidase (PFM1AAP)Confirmatorydepositor-specified cross reference
602209Counterscreen for inhibitors of PFM1AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP) (2)Confirmatorydepositor-specified cross reference
602212Counterscreen for inhibitors of PFM1 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (2)Confirmatorydepositor-specified cross reference
602213QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (PFM1AAP) (2)Confirmatorydepositor-specified cross reference
602228Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit Plasmodium falciparum M1 Aspartyl Aminopeptidase (PFM1AAP) (2)Confirmatorydepositor-specified cross reference
624163QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1 Alanyl Aminopeptidase (PFM1AAP) (3)Confirmatorydepositor-specified cross reference
624164Counterscreen for inhibitors of PFM1AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP) (3)Confirmatorydepositor-specified cross reference
624165Counterscreen for inhibitors of PFM1 aminopeptidases: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (3)Confirmatorydepositor-specified cross reference
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1 R03 MH084103-01
Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
External Assay ID: M1AAP_INH_SUMMARY

Name: Summary of the probe development effort to identify inhibitors of the Plasmodium falciparum M1- Family Alanyl Aminopeptidase (M1AAP).

Description:

Aminopeptidases (APs) are metalloproteases that cleave amino-terminal (N-terminal) amino acids during protein synthesis (1, 2) These enzymes are characterized in part by their post-translational removal of leucine, aspartate, proline, methionine, etc from proteins and peptides, in order that proteins are properly regulated, targeted for degradation, and trafficked within both animal and plant cells (3). As a result, these enzymes are involved in diverse processes, including meiosis (1), cellular senescence (1), blood pressure control (4, 5), angiogenesis (6), and inflammation (7). The intraerythrocytic stages of the human malaria parasite Plasmodium falciparum employs two cytosolic neutral aminopeptidases, an M1-family alanyl aminopeptidase (M1AAP) and an M17-family leucine aminopeptidase (M17LAP), in the terminal stages of host hemoglobin digestion (8). Their action results in the release of free amino acids that are used for the anabolism of parasite proteins and, hence, are critical to the development of the parasite in red blood cells (9). Inhibitors of the two exopeptidases prevent the growth of P. falciparum parasites in vitro, and protect mice from infection with rodent malaria P. chabaudi, providing strong evidence that these enzymes are targets which can be used to develop new anti-malarial drugs (10-12). Thus, Plasmodium falciparum M1-family alanyl aminopeptidase (M1AAP) is an attractive chemotherapeutic target and was used to screen a large (200K) chemical library to identify novel inhibitors as probes for this enzyme in Plasmodium falciparum.

Summary of Probe Development Effort:

This probe development effort is focused on the identification of M1AAP inhibitors. All AIDs that contain results associated with this project can be found in the "Related Bioassays" section of this Summary AID.

References:

1. Walling, L.L., Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin Plant Biol, 2006. 9(3): p. 227-33.
2. Meinnel, T., Serero, A., and Giglione, C., Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem, 2006. 387(7): p. 839-51.
3. Jankiewicz, U. and Bielawski, W., The properties and functions of bacterial aminopeptidases. Acta Microbiol Pol, 2003. 52(3): p. 217-31.
4. Banegas, I., Prieto, I., Vives, F., Alba, F., de Gasparo, M., Segarra, A.B., Hermoso, F., Duran, R., and Ramirez, M., Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst, 2006. 7(3): p. 129-34.
5. Silveira, P.F., Gil, J., Casis, L., and Irazusta, J., Peptide metabolism and the control of body fluid homeostasis. Curr Med Chem Cardiovasc Hematol Agents, 2004. 2(3): p. 219-38.
6. Zhong, H. and Bowen, J.P., Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr Med Chem, 2006. 13(8): p. 849-62.
7. Proost, P., Struyf, S., and Van Damme, J., Natural post-translational modifications of chemokines. Biochem Soc Trans, 2006. 34(Pt 6): p. 997-1001.
8. Klemba M, Gluzman I, Goldberg DE. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem. 2004 Oct 8;279(41):43000-7.
9. Dalal S, Klemba M. J Biol Chem. 2007 Dec 7;282(49):35978-87. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum.
10. Skinner-Adams TS, Lowther J, Teuscher F, Stack CM, Grembecka J, Mucha A, Kafarski P, Trenholme KR, Dalton JP, Gardiner DL. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem. 2007 Nov 29;50(24):6024-31.
11. Gavigan CS, Machado SG, Dalton JP, Bell A. Analysis of antimalarial synergy between bestatin and endoprotease inhibitors using statistical response-surface modelling. Antimicrob Agents Chemother. 2001 Nov;45(11):3175-81.
12. Nankya-Kitaka MF, Curley GP, Gavigan CS, Bell A, Dalton JP. Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res. 1998 Jul;84(7):552-8.

Keywords:

Summary, Summary AID, M1, M1AAP, alanyl, AAP, aminopeptidase, malaria, parasite, plasmodium falciparum, exopeptidase, dose response, counterscreen, HTS, high throughput screen, 1536, inhibit, inhibitor, inhibition, fluorescence, QFRET, FLINT, peptide, cleavage, Southern, Kansas, KU, Scripps, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Additional Information
Grant Number: 1 R03 MH084103-01

PageFrom: