Bookmark and Share
BioAssay: AID 328602

Reduction of human MCF7 cell growth at 5.0 uM after 48 hrs by XTT assay

Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) more ..
_
   
 Tested Compounds
 Tested Compounds
All(1)
 
 
Active(1)
 
 
 Tested Substances
 Tested Substances
All(1)
 
 
Active(1)
 
 
 Related BioAssays
 Related BioAssays
AID: 328602
Data Source: ChEMBL (476628)
Depositor Category: Literature, Extracted
BioAssay Version:
Deposit Date: 2010-05-25
Modify Date: 2014-05-14

Data Table ( Complete ):           View Active Data    View All Data
BioActive Compound: 1
Description:
Title: Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.

Abstract: Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) system composed of NADPH, glutathione reductase, and GSH supported by glutaredoxin are the two electron donor systems that control cellular proliferation, viability, and apoptosis. Recently, the selenocysteine-dependent TrxR enzyme has emerged as an important molecular target for anticancer drug development. Here, we have discovered that ATO irreversibly inhibits mammalian TrxR with an IC(50) of 0.25 microM. Both the N-terminal redox-active dithiol and the C-terminal selenothiol-active site of reduced TrxR may participate in the reaction with ATO. The inhibition of MCF-7 cell growth by ATO was correlated with irreversible inactivation of TrxR, which subsequently led to Trx oxidation. Furthermore, the inhibition of TrxR by ATO was attenuated by GSH, and GSH depletion by buthionine sulfoximine enhanced ATO-induced cell death. These results strongly suggest that the ATO anticancer activity is by means of a Trx system-mediated apoptosis. Blocking cancer cell DNA replication and repair and induction of oxidative stress by the inhibition of both Trx and GSH systems are suggested as cancer chemotherapeutic strategies.
(PMID: 17640917)
Comment
Putative Target:

ChEMBL Target ID: 80224
Target Type: CELL-LINE
Cell Line: MCF7
Tissue: Breast carcinoma cells
Pref Name: MCF7
Organism: Homo sapiens
Tax ID: 9606
Confidence: Target assigned is non-molecular
Relationship Type: Non-molecular target assigned
Categorized Comment
Assay Type: Functional

Assay Data Source: Scientific Literature

BAO: Assay Format: cell-based format

Assay Cell Type: MCF7

Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
1Activity activity commentActivity activity commentString
2Activity standard flagActivity standard flagInteger
3Activity qualifierActivity qualifierString
4Activity published valueActivity published valueFloat
5Activity standard valueActivity standard valueFloat

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
PageFrom: