Bookmark and Share
BioAssay: AID 2715

Summary of probe development efforts to identify common inhibitors of VIM-2 and IMP-1 metallo-beta-lactamases (IMP-1 inhibitors)

Name: Summary of probe development efforts to identify common inhibitors of VIM-2 and IMP-1 metallo-beta-lactamases (IMP-1 inhibitors). ..more
_
   
AID: 2715
Data Source: The Scripps Research Institute Molecular Screening Center (IMP1_INH_SUMMARY)
BioAssay Type: Summary, Candidate Probes/Leads with Supporting Evidence
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2010-03-27
Modify Date: 2013-01-04
Target
Related Experiments
Show more
AIDNameTypeProbeComment
1556Epi-absorbance primary biochemical high throughput screening assay to identify inhibitors of IMP-1 metallo-beta-lactamaseScreening depositor-specified cross reference: Primary assay (IMP-1 inhibitors in singlicate)
1854Summary of probe development efforts to identify selective inhibitors of VIM-2 metallo-beta-lactamaseSummary1 depositor-specified cross reference: Summary (VIM-2 inhibitors)
2184Epi-absorbance-based counterscreen assay for common VIM-2 and IMP-1 inhibitors: biochemical high throughput screening assay to identify inhibitors of TEM-1 serine-beta-lactamase.Screening depositor-specified cross reference: Counterscreen Assay (TEM-11 inhibitors in triplicate)
2187Epi-absorbance-based confirmation assay for common VIM-2 and IMP-1 inhibitors: biochemical high throughput screening assay to identify inhibitors of VIM-2 metallo-beta-lactamase.Screening depositor-specified cross reference: Counterscreen Assay (VIM-2 inhibitors in triplicate)
2189Epi-absorbance-based confirmation assay for common IMP-1 and VIM-2 inhibitors: biochemical high throughput screening assay to identify inhibitors of IMP-1 metallo-beta-lactamase.Screening depositor-specified cross reference: Confirmation Assay (IMP-1 inhibitors in triplicate)
2754Epi-absorbance-based dose response assay for common IMP-1 and VIM-2 inhibitors: biochemical high throughput screening assay to identify inhibitors of VIM-2 metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Dose response (VIM-2 inhibitors in triplicate)
2755Epi-absorbance-based dose response assay for common IMP-1 and VIM-2 inhibitors: biochemical high throughput counterscreen to identify inhibitors of TEM-1 metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Dose response counterscreen (TEM-1 inhibitors in triplicate)
2756Epi-absorbance-based dose response assay for common IMP-1 and VIM-2 inhibitors: biochemical high throughput screening assay to identify inhibitors of IMP-1metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Dose response (IMP-1 inhibitors in triplicate)
2767Late stage counterscreen results from the probe development effort to identify common IMP-1 and VIM-2 inhibitors: Epi-absorbance-based biochemical dose response assay for inhibitors of TEM-1 metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Dose response counterscreen (TEM-1 inhibitors in triplicate)
2768Late stage results from the probe development effort to identify common IMP-1 and VIM-2 inhibitors: Epi-absorbance-based biochemical dose response assay for inhibitors of IMP-1metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Late stage dose response (IMP-1 inhibitors in triplicate)
2769Late stage results from the probe development effort to identify common IMP-1 and VIM-2 inhibitors: Epi-absorbance-based biochemical dose response assay for inhibitors of VIM-2 metallo-beta-lactamaseConfirmatory depositor-specified cross reference: Late stage dose response (VIM-2 inhibitors in triplicate)
449774Late stage counterscreen results from the probe development efforts to identify common IMP-1 and VIM-2 inhibitors: wildtype E. coli growth inhibition dose response assay (MIC: minimum inhibitory concentration)Other depositor-specified cross reference: Late stage counterscreen (IMP-1 and VIM-2 inhibitors in triplicate)
463099Late stage assay provider counterscreen results from the probe development efforts to identify common IMP-1 and VIM-2 inhibitors: IMP1-transformed E. coli growth inhibition dose response assay in the presence of imipenemOther depositor-specified cross reference: Late stage dose response counterscreen (IMP-1 transformed E.coli growth inhibition in triplicate)
463100Late stage assay provider counterscreen results from the probe development efforts to identify common IMP-1 and VIM-2 inhibitors: VIM-2-transformed E. coli growth inhibition dose response assay in the presence of imipenemOther depositor-specified cross reference: Late stage dose response counterscreen (VIM-2 transformed E.coli growth inhibitors in triplicate)
1527Primary biochemical high throughput screening assay to identify inhibitors of VIM-2 metallo-beta-lactamaseScreening same project related to Summary assay
1856Epi-absorbance-based counterscreen for selective VIM-2 inhibitors: biochemical high throughput screening assay to identify inhibitors of IMP-1 metallo-beta-lactamase.Screening same project related to Summary assay
1857FRET-based counterscreen assay for selective VIM-2 inhibitors: biochemical high throughput screening assay to identify epi-absorbance assay artifactsScreening same project related to Summary assay
1860Epi-absorbance-based confirmation biochemical high throughput screening assay to identify selective inhibitors of VIM-2 metallo-beta-lactamase.Screening same project related to Summary assay
1866Epi-absorbance-based counterscreen assay for selective VIM-2 inhibitors: biochemical high throughput screening assay to identify inhibitors of TEM-1 serine-beta-lactamase.Screening same project related to Summary assay
1919Epi-absorbance-based dose response biochemical high throughput screening assay for selective inhibitors of VIM-2 metallo-beta-lactamaseConfirmatory same project related to Summary assay
1920Epi-absorbance-based counterscreen for selective VIM-2 inhibitors: dose response biochemical high throughput screening assay to identify inhibitors of IMP-1 metallo-beta-lactamase.Confirmatory same project related to Summary assay
1925Epi-absorbance-based counterscreen for selective VIM-2 inhibitors: dose response biochemical high throughput screening assay to identify inhibitors of TEM-1 serine-beta-lactamase.Confirmatory same project related to Summary assay
1926FRET-based counterscreen for selective VIM-2 inhibitors: dose response biochemical high throughput screening assay to identify epi-absorbance assay artifacts.Confirmatory same project related to Summary assay
1927FRET-based counterscreen for selective VIM-2 inhibitors: dose response biochemical high throughput screening assay to identify inhibitors of IMP-1 metallo-beta-lactamase.Confirmatory same project related to Summary assay
2128Late stage results from the probe development efforts to identify selective inhibitors of VIM-2 metallo-beta-lactamase: probe resultsOther same project related to Summary assay
2317Late stage results from the probe development efforts to identify selective inhibitors of VIM-2 metallo-beta-lactamase: Prior art resultsScreening same project related to Summary assay
2319Late stage results from the probe development efforts to identify selective inhibitors of VIM-2 metallo-beta-lactamase: probe resultsOther same project related to Summary assay
504620Late stage assay provider results from the probe development efforts to identify selective inhibitors of VIM-2 metallo-beta-lactamase: VIM-2-transformed E. coli growth inhibition in the presence of imipenem (synergy)Confirmatory same project related to Summary assay
624079Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit VIM-2Confirmatory1 same project related to Summary assay
624080Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective): Growth inhibition of clinically relevant VIM-2 transformed P. aeruginosa (PA641) in the presence of imipenem (synergy)Other same project related to Summary assay
624081Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective): VIM-2-transformed E. coli growth inhibition in the presence of imipenem (synergy)Other1 same project related to Summary assay
624082Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective): Growth inhibition of clinically relevant New Delhi metallo-beta-lactamase-1 (NDM-1)-transformed K. pneumoniae (BAA-2146) in the presence of imipenem (synergy)Other same project related to Summary assay
624083Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit VIM-2Confirmatory1 same project related to Summary assay
624084Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit IMP-1Confirmatory1 same project related to Summary assay
624085Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit IMP-1Confirmatory1 same project related to Summary assay
624090Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit AmpCConfirmatory same project related to Summary assay
624092Late stage assay provider results from the probe development efforts to identify nonselective inhibitors of VIM-2 metallo-beta-lactamase: Absorbance-based biochemical assays to determine the ability of probe candidates and selected analogs to inhibit TEM-1Confirmatory same project related to Summary assay
624095Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective): Growth inhibition of clinically relevant IMP-1 transformed P. aeruginosa (KN20) in the presence of imipenem (synergy)Other same project related to Summary assay
624096Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective): Growth inhibition of clinically relevant VIM-2-transformed Acinetobacter species (YMC07/8/B3323) in the presence of imipenem (synergy)Other2 same project related to Summary assay
624097Late stage assay provider results from the probe development efforts to identify inhibitors of VIM-2 metallo-beta-lactamase (nonselective):IMP-1-transformed E. coli growth inhibition in the presence of imipenem (synergy)Other1 same project related to Summary assay
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center (SRIMSC)
Center Affiliation: The Scripps Research Institute (TSRI)
Assay Provider: Peter Hodder, TSRI
Network: Molecular Libraries Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1 R21 NS059451-01 Fast Track
Grant Proposal PI: Peter Hodder, TSRI
External Assay ID: IMP1_INH_SUMMARY

Name: Summary of probe development efforts to identify common inhibitors of VIM-2 and IMP-1 metallo-beta-lactamases (IMP-1 inhibitors).

Description:

The emergence of gram-negative bacteria that exhibit multi-drug resistance, combined with the paucity of new antibiotics, poses a public health challenge (1). The production of bacterial beta-lactamase enzymes, in particular, is a common mechanism of drug resistance (2-4). The beta-lactamases evolved from bacteria with resistance to naturally-occurring beta-lactams or penams (5), agents which inhibit the transpeptidase involved in cell wall biosynthesis (6). Human medicine adapted these agents into synthetic antibiotics such as penicillins, cephalosporins, carbapenems, and monobactams that contain a 2-azetidone ring (5, 7). The metallo-beta-lactamases (MBL) are zinc-dependent class B beta-lactamases that hydrolyze the beta-lactam ring, rendering the antibiotic ineffective (6, 8). Increasingly, nosocomial beta-lactam antibiotic resistance arises in P. aeruginosa, Enterobacteriaceae, and other pathogenic bacteria via gene transfer of B1 MBLs (4, 9), including IMP (active on IMiPenem) (10) and VIM (Verona IMipenemase) (11, 12). For two of these enzymes, VIM-2 and IMP-1, no inhibitors exist for clinical use (6, 9). Thus, the identification of MBL inhibitors would provide useful tools for reducing nosocomial infections and elucidating their mechanism of action (13-14).

Summary of Probe Development Effort:

This probe development effort is focused on the identification of common VIM-2/IMP-1 inhibitors (AIDs 1527 and 1556). All AIDs that contain results associated with this project can be found in the #Related Bioassays# section of this Summary AID.

References:

1. Siegel, R.E., Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care, 2008. 53(4): p. 471-9.
2. Gupta, V., An update on newer beta-lactamases. Indian J Med Res, 2007. 126(5): p. 417-27.
3. Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51, table of contents.
4. Sacha, P., Wieczorek, P., Hauschild, T., Zorawski, M., Olszanska, D., and Tryniszewska, E., Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol, 2008. 46(2): p. 137-42.
5. Koch, A.L., Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev, 2003. 16(4): p. 673-87.
6. Jin, W., Arakawa, Y., Yasuzawa, H., Taki, T., Hashiguchi, R., Mitsutani, K., Shoga, A., Yamaguchi, Y., Kurosaki, H., Shibata, N., Ohta, M., and Goto, M., Comparative study of the inhibition of metallo-beta-lactamases (IMP-1 and VIM-2) by thiol compounds that contain a hydrophobic group. Biol Pharm Bull, 2004. 27(6): p. 851-6.
7. Abeylath, S.C. and Turos, E., Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opin Drug Deliv, 2008. 5(9): p. 931-49.
8. Wang, Z., Fast, W., Valentine, A.M., and Benkovic, S.J., Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol, 1999. 3(5): p. 614-22.
9. Walsh, T.R., Toleman, M.A., Poirel, L., and Nordmann, P., Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev, 2005. 18(2): p. 306-25.
10. Hirakata, Y., Izumikawa, K., Yamaguchi, T., Takemura, H., Tanaka, H., Yoshida, R., Matsuda, J., Nakano, M., Tomono, K., Maesaki, S., Kaku, M., Yamada, Y., Kamihira, S., and Kohno, S., Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant gram-negative rods carrying the metallo-beta-lactamase gene blaIMP. Antimicrob Agents Chemother, 1998. 42(8): p. 2006-11.
11. Lauretti, L., Riccio, M.L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., and Rossolini, G.M., Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother, 1999. 43(7): p. 1584-90.
12. Wang, C.X. and Mi, Z.H., Imipenem-resistant Pseudomonas aeruginosa producing IMP-1 metallo-beta-lactamases and lacking the outer-membrane protein OprD. J Med Microbiol, 2006. 55(Pt 3): p. 353-4.
13. Zuck P, O'Donnell GT, Cassaday J, Chase P, Hodder P, Strulovici B, Ferrer M. Miniaturization of absorbance assays using the fluorescent properties of white microplates. Anal Biochem. 2005 Jul 15;342 (2):254-9.
14. Minond D, Saldanha SA, Subramaniam P, Spaargaren M, Spicer T, Fotsing JR, Weide T, Fokin VV, Sharpless KB, Galleni M, Bebrone C, Lassaux P, Hodder P. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem. 2009 Jul 15;17(14):5027-37.

Keywords:

Summary, Summary AID, probes, IMP-1, VIM-2, IMP, VIM, IMP1, IMP-1, VIM2, beta-lactamase, lactamase, antibiotic resistance, bacteria, confirmation, primary, HTS, high throughput screen, 1536, common, inhibitor, inhibit, inhibition, epi-absorbance, nitrocefin, fluorescence, Scripps, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Center Network, MLPCN.
Additional Information
Grant Number: 1 R21 NS059451-01

PageFrom: