Bookmark and Share
BioAssay: AID 2697

Summary of assays for compounds that inhibit KCNQ1 potassium channels

Assay Implementation: Zhihong Lin Ph.D., Xiaofang Huang M.S., Shunyou Long M.S., Haibo Yu Ph.D., Meng Wu Ph.D., Joseph Babcock, Bill Shi Ph.D., David Meyers Ph.D., Jia Xu Ph.D. ..more
_
   
AID: 2697
Data Source: Johns Hopkins Ion Channel Center (Summary_KCNQ1_inh)
BioAssay Type: Summary, Candidate Probes/Leads with Supporting Evidence
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2010-03-26
Modify Date: 2011-09-21
Target
Sequence: potassium voltage-gated channel subfamily KQT member 1 isoform 1 [Homo sapiens]
Description ..   
Protein Family: KCNQ voltage-gated potassium channel

Gene:KCNQ1     Related Protein 3D Structures     More BioActivity Data..
Related Experiments
AIDNameTypeComment
2642Primary cell-based high-throughput screening assay for identification of compounds that inhibit KCNQ1 potassium channelsScreeningdepositor-specified cross reference: Primary HTS assay for KCNQ1 inhibitors where 305616 compounds were tested and 3878 are active.
588353Validation (re-confirmation) assay for identification of compounds that inhibit KCNQ1 potassium channelsScreeningdepositor-specified cross reference: Validation (re-confirmation) assay for identification of compounds that inhibit KCNQ1 potassium chan
588366Counter screen assay of the parental CHO cells for identification of compounds that inhibit KCNQ1 potassium channelsOtherdepositor-specified cross reference: Counter screen assay of the parental CHO cells for identification of compounds that inhibit KCNQ1 po
651746Specificity screen against KCNQ2 for identification of compounds that inhibit KCNQ1 potassium channelsScreeningdepositor-specified cross reference
652147Specificity screen against KCNQ1/KCNE1 for identification of compounds that inhibit KCNQ1 potassium channelsScreeningdepositor-specified cross reference
Description:
Data Source: Johns Hopkins Ion Channel Center (JHICC)
BioAssay Type: Summary

Source (MLPCN Center Name): Johns Hopkins Ion Channel Center (JHICC)
Center Affiliation: Johns Hopkins University, School of Medicine
Screening Center PI: Min Li, Ph.D.
Assay Provider: Meng Wu, Ph.D.
Network: Molecular Libraries Probe Production Centers Network (MLPCN)
Grant Proposal Number: 1 R03 MH090837-01
Grant Proposal PI: Meng Wu, Ph.D., Johns Hopkins University School of Medicine
Assay Implementation: Zhihong Lin Ph.D., Xiaofang Huang M.S., Shunyou Long M.S., Haibo Yu Ph.D., Meng Wu Ph.D., Joseph Babcock, Bill Shi Ph.D., David Meyers Ph.D., Jia Xu Ph.D.
HTS execution: Zhihong Lin Ph.D., Xiaofang Huang M.S., Shunyou Long M.S., Kaiping Xu M.S., Meng Wu Ph.D.

Name: Summary of assays for compounds that inhibit KCNQ1 potassium channels

Description:

Voltage-gated potassium channels [1,2] are tetrameric membrane proteins that selectively conduct K+ across cellular membranes, thus open, close, and inactivate in response to changes in transmembrane voltage [3]. Individual subtypes of these potassium channels often have a unique expression pattern allowing cells to "fine-tune" membrane potentials and excitability according to their respective physiological functions [4]. Dysfunctions of these electrical excitability controlling proteins, either congenital or acquired, are attributed to a variety of diseases [5,6], such as cardiac arrhythmias, diabetes, hypertension, and epilepsy. Specific modulation of individual potassium channel types therefore represents an enormous potential for the development of physiological tool compounds and new drugs [7-9].

KCNQ1 (Kv7.1, KvLQT) [10,11] is an alpha-subunit subtype of voltage-gated KCNQ potassium channel family, which is composed of five members of KCNQ1-KCNQ5. They share between 30% and 65% amino acid identity. A classical KCNQ alpha-subunit is composed of six transmembrane segments, including a voltage-sensor segment and a pore domain [12-15]. Unique from other members of KCNQ family [16], KCNQ1 has been generally absent from neuronal tissues, mainly expressed in heart, kidney, small intestine, pancreas, prostate and other non-excitable epithelial tissues. Also contrast to other members of KCNQ family which form both alpha-subunit homo- and heterotetrameric channels, KCNQ1 channels only form alpha-subunit homotetramers [10]. They commonly co-assemble with beta-subunit KCNE proteins to give rise to functional variations in different tissues.

These molecular assemblies have afforded KCNQ1 with two important physiological functions: 1) repolarization of the cardiac tissue following an action potential and 2) water and salt transport in epithelial tissues. Mutations in this gene are associated with hereditary long QT syndrome, diabetics [18], Romano-Ward syndrome, Jervell and Lange-Nielsen syndrome [19] and familial atrial fibrillation [20], as well as impairment of cyclic AMP-stimulated intestinal secretion of chloride ions related to cystic fibrosis [21,22] and pathological forms of secretary diarrhea [23-25]. Furthermore, drug-induced acquired KCNQ1 and KCNQ1/KCNE dysfunctions also raise concerns of KCNQ1/KCNE as potential hERG-like drug safety issue in pharmaceutical development [17].

For their pharmacological responses, KCNQ1/KCNE heteromultimers function differently from KCNQ1 alone. Initial discovery of KCNQ1 modulators is focused on the KCNQ1 (and KCNQ1/KCNE1 IKs) inhibitors [17], from earlier Chromonal 293B[26], linopirdine and XE991[27], to new family of potent inhibitors, i.e. Merck-IKs (IC50 ~0.08 nM), JNJ 303(IC50 0.064 uM) and JNJ282 (IC50 0.001 uM).

Systemic compound screens for KCNQ1 and its heteromultimers have not been reported. Here the assay, Tl+-based fluorescence assay in 384 format by FDSS, therefore, was used for the identification of inhibitory compounds acting on KCNQ1 from a large MLSMR compound library.



Principle of the assay

The Tl+ ion, which is permeable through potassium channels, serves as a surrogate for K+ flux [28]. The thallium-sensitive dye is loaded into cells, and, in the absence of Tl+, exhibits very low basal fluorescence. Upon the addition of Tl+ onto cells expressing potassium channels, in this case, KCNQ1 potassium channel, extracellular Tl+ flux into cells through open KCNQ1 channels, and when bound to the dye, produce a fluorescent signal that is monitored in real-time by a fluorescence imaging plate reader [29, 30].

This assay summarize the efforts in the identification of compounds that inhibit KCNQ1 channel which is currently underway at JHICC. More relevant assays and other information will be added or updated as they become available.

Keywords:

KCNQ1, HTS assay, 384, primary, antagonist, inhibitor, FDSS, Thallium, fluorescence, Kinetic, FluxOR, JHICC, Johns Hopkins, MLSMR, Molecular Libraries Probe Production Centers Network, MLPCN.


References:
1. Gutman, G. A., Chandy, K. G., Grissmer, S., et al. International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacol Rev 57(4), 473-508 (2005) PMID: 16382104
2. Dai, S., Hall, D. D., and Hell, J. W. Supramolecular Assemblies and Localized Regulation of Voltage-Gated Ion Channels. Physiol. Rev. 89(2), 411-452 (2009) PMID: 19342611
3. Borjesson, S., and Elinder, F. Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels. Cell Biochemistry and Biophysics 52(3), 149-174 (2008) PMID: 18989792
4. Pischalnikova, A., and Sokolova, O. The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels. Journal of Neuroimmune Pharmacology 4(1), 71-82 (2009) PMID: 18836841
5. Peroz, D., Rodriguez, N., Choveau, F., et al. Kv7.1 (KCNQ1) properties and channelopathies. The Journal of Physiology 586(7), 1785-1789 (2008) PMID: 18174212
6. Cannon, S. C. Physiologic Principles Underlying Ion Channelopathies. Neurotherapeutics 4(2), 174-183 (2007) PMID: 17395127
7. Ahern, C. A., and Kobertz, W. R. Chemical Tools for K+ Channel Biology. Biochemistry 48(3), 517-526 (2008) PMID: 19113860
8. Wulff, H., and Zhorov, B. S. K+ Channel Modulators for the Treatment of Neurological Disorders and Autoimmune Diseases. Chemical Reviews 108(5), 1744-1773 (2008) PMID: 18476673
9. Wickenden, A. D. K+ channels as therapeutic drug targets. Pharmacology & Therapeutics 94(1-2), 157-182 (2002) PMID: 12191600
10. Jespersen, T., Grunnet, M., and Olesen, S.-P. The KCNQ1 Potassium Channel: From Gene to Physiological Function. Physiology 20(6), 408-416 (2005) PMID: 16287990
11. Mackie, A. R., and Byron, K. L. Cardiovascular KCNQ (Kv7) Potassium Channels: Physiological Regulators and New Targets for Therapeutic Intervention. Mol Pharmacol 74(5), 1171-1179 (2008) PMID: 18684841
12. Maljevic, S., Wuttke, T. V., and Lerche, H. Nervous system KV7 disorders: breakdown of a subthreshold brake. The Journal of Physiology 586(7), 1791-1801 (2008) PMID: 18238816
13. Robbins, J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacology & Therapeutics 90(1), 1-19 (2001) PMID: 11448722
14. Hernandez, C. C., Zaika, O., Tolstykh, G. P., et al. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. The Journal of Physiology 586(7), 1811-1821 (2008) PMID: 18238808
15. Delmas, P., and Brown, D. A. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6(11), 850-862 (2005) PMID: 16261179
16. Brown, D. A., and Passmore, G. M. Neural KCNQ (Kv7) channels. British Journal of Pharmacology 156(8), 1185-1195 (2009) PMID: 19298256
17. Towart, R., Linders, J. T. M., Hermans, A. N., et al. Blockade of the IKs potassium channel: An overlooked cardiovascular liability in drug safety screening? Journal of Pharmacological and Toxicological Methods 60(1), 1-10 (2009) PMID: 19439185
18. Jonsson, A., Isomaa, B., Tuomi, T., et al. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes, 58(10) 2409-13 (2009) PMID: 19584308
19. Schmitt, N., Schwarz, M., Peretz, A., et al. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19(3), 332-340 (2000) PMID: 10654932
20. OMIM. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=607542 (2009)
21. Namkung, W., Song, Y., Mills, A. D., et al. In Situ Measurement of Airway Surface Liquid [K+] Using a Ratioable K+-sensitive Fluorescent Dye. J. Biol. Chem. 284(23), 15916-15926 (2009) PMID: 19364771
22. Moser, S., Harron, S., Crack, J., et al. Multiple KCNQ Potassium Channel Subtypes Mediate Basal Anion Secretion from the Human Airway Epithelial Cell Line Calu-3. Journal of Membrane Biology 221(3), 153-163 (2008) PMID: 18264812
23. Schroeder, B. C., Waldegger, S., Fehr, S., et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403(6766), 196-199 (2000) PMID: 10646604
24. Greenwood, I., Yeung, S., Hettiarachi, S., et al. KCNQ-encoded channels regulate Na+ transport across H441 lung epithelial cells. Pflugers Archiv European Journal of Physiology 457(4), 785-794 (2009) PMID: 18663467
25. Matos, J. E., Sausbier, M., Beranek, G., et al. Role of cholinergic-activated K Ca 1.1 (BK), K Ca 3.1 (SK4) and K V 7.1 (KCNQ1) channels in mouse colonic Cl - secretion. Acta Physiologica 189(3), 251-258 (2007) PMID: 17305705
26. Lerche, C., Bruhova, I., Lerche, H., et al. Chromanol 293B Binding in KCNQ1 (Kv7.1) Channels Involves Electrostatic Interactions with a Potassium Ion in the Selectivity Filter. Mol Pharmacol 71(6), 1503-1511 (2007) PMID: 17347319
27. Wang, H.-S., Brown, B. S., McKinnon, D., et al. Molecular Basis for Differential Sensitivity of KCNQ and IKs Channels to the Cognitive Enhancer XE991. Mol Pharmacol 57(6), 1218-1223 (2000) PMID: 10825393
28. Delpire, E., et al., Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A., 2009. 106(13),5383-5388. PMID: 19279215.
29. Weaver, C.D., et al., A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. J Biomol Screen, 2004. 9(8), 671-677. PMID: 15634793.
30. Niswender, C.M., et al., A Novel Assay of Gi/o-Linked G Protein-Coupled Receptor Coupling to Potassium Channels Provides New Insights into the Pharmacology of the Group III Metabotropic Glutamate Receptors. Mol Pharmacol, 2008. 73(4), 1213-1224. PMID: 18171729.
31. Zhang, J.-H., T.D.Y. Chung, and K.R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 1999. 4(2),67-73. PMID: 10838414.
32. Malo, N., et al., Statistical practice in high-throughput screening data analysis. Nat Biotech, 2006. 24(2), 167-175. PMID: 16465162.
Protocol
Please see the related assays (e.g., AID 2642) for protocol details.
Comment
Possible artifacts of this assay can include, but are not limited to: non-intended chemicals or dust in or on wells of the microtiter plate, compounds that non-specifically modulate the cell host or the targeted activity, and compounds that quench or emit light or fluorescence within the well. All test compound concentrations reported are nominal; the specific concentration for a particular test compound may vary based upon the actual sample provided by the MLSMR.
Additional Information
Grant Number: 1 R03 MH090837-01

PageFrom: