Bookmark and Share
BioAssay: AID 2689

Summary of Broad Institute MLPCN Serine Threonine Kinase 33 Inhibitor Project

Primary Collaborators: Robert Gould, Broad Institute, rgould@broainstitute.org, , 617.714.7220, Cambridge, MA ..more
_
   
 Tested Compounds
 Tested Compounds
All(2)
 
 
Probe(2)
 
 
Active(2)
 
 
 Tested Substances
 Tested Substances
All(2)
 
 
Probe(2)
 
 
Active(2)
 
 
AID: 2689
Data Source: Broad Institute (2052-01_INHIBITORS_PROJECT)
BioAssay Type: Summary, Candidate Probes/Leads with Supporting Evidence
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2010-03-26
Modify Date: 2014-07-09

Data Table ( Complete ):           View Active Data    View All Data
Target
BioActive Compounds: Chemical Probe: 2    Active: 2
Related Experiments
Show more
AIDNameTypeComment
2661Luminescence Cell-Free Homogenous Primary HTS to Identify Inhibitors of Serine/Threonine Kinase 33 ActivityScreeningdepositor-specified cross reference: 321908 hts compounds at singlepoint in 01 ADP Glo Kinase Assay measuring activity
2821Luminescence Cell-Free Homogenous Dose Retest to Identify Inhibitors of Serine/Threonine Kinase 33 ActivityConfirmatorydepositor-specified cross reference: 224 cherrypick compounds at dose in 01 ADP Glo Kinase Assay measuring activity
504583Protein Kinase A Activity Assay Measured in Biochemical System Using Plate Reader - 2052-04_Inhibitor_Dose_DryPowder_ActivityConfirmatorydepositor-specified cross reference: 29 drypowder compounds at DOSENOFILE in 04 PKA Caliper Counter Screen measuring activity
588480STK-33 Kinase Inhibition Measured in Biochemical System Using Plate Reader - 2052-02_Inhibitor_Dose_DryPowder_Activity_Set2Confirmatorydepositor-specified cross reference
588629Protein Kinase A Activity Assay Measured in Biochemical System Using Plate Reader - 2052-04_Inhibitor_Dose_DryPowder_Activity_Set2Confirmatorydepositor-specified cross reference
588632STK-33 Kinase Inhibition Measured in Biochemical System Using Plate Reader - 2052-02_Inhibitor_Dose_DryPowder_ActivityConfirmatorydepositor-specified cross reference
588756Counter screen for activity against Aurora B, in dose Measured in Biochemical System Using Scintillation - 2052-06_Inhibitor_Dose_DryPowder_Activity_Set2Confirmatorydepositor-specified cross reference
588757Counter screen for activity against Aurora B, in dose Measured in Biochemical System Using Scintillation - 2052-06_Inhibitor_Dose_DryPowder_ActivityConfirmatorydepositor-specified cross reference
588808Counter screen for activity against Aurora B, in dose Measured in Biochemical System Using Scintillation - 2052-06_Inhibitor_Dose_DryPowder_Activity_Set3Confirmatorydepositor-specified cross reference
602158STK-33 Kinase Inhibition Measured in Biochemical System Using Plate Reader - 2052-02_Inhibitor_Dose_DryPowder_Activity_Set3Confirmatorydepositor-specified cross reference
Description:
Keywords: Serine Threonine Kinase Inhibitor, STK33

Primary Collaborators: Robert Gould, Broad Institute, rgould@broainstitute.org, , 617.714.7220, Cambridge, MA

Biological Relevance:
The RAS family of small GTPases comprises a set of highly regulated switches controlling several cellular signal transduction pathways and networks important for growth, cytoskeletal rearrangements, adhesion, motility, viability, and differentiation. Deregulated, constitutively active, mutant RAS proteins are expressed in approximately 30% of human tumors and are oncogenic, as the viability and proliferation of cancer cells harboring these mutations have been shown to be dependent upon mutant RAS. Despite the intense interest in RAS over the last 25 years, the identification of direct low molecular weight modulators of RAS that can be used to probe the basis for the mutant RAS-dependent malignant phenotype and serve as potential lead structures for therapeutic development has proven challenging.

Rather than target mutant RAS protein directly, an alternative approach involves the selective modulation of cellular deregulation that occurs specifically in mutant RAS-dependent cells. Toward this end, employing RNA interference (RNAi) technology in a gene suppression screen, a serine/threonine kinase, STK33, has recently been identified and shown to be required for the survival and proliferation of mutant KRAS-dependent cancer cells irrespective of tissue origin (PMID 19490892). Remarkably, STK33 appears to be dispensable in KRAS-independent cells. These results indicate a co-dependency between mutant KRAS and STK33 that results in a synthetic lethal interaction when STK33 is suppressed. Consistent with the RNAi studies, expressing catalytically inactive STK33 as a dominant negative has shown that STK33 promotes KRAS-dependent cancer cell viability in a kinase activity-dependent manner.

The overall near term goal is to identify STK33 kinase activity inhibitors to assess whether small molecules can recapitulate the exquisite cell-based specificity of RNAi for inducing apoptosis in mutant KRAS-dependent cells without discernable effects on KRAS-independent cells. The longer-term objective is to use these probes in conjunction with a comprehensive proteomics approach to elucidate the molecular basis of RAS-dependent regulation and mutant KRAS-dependent tumorigenesis with the goal of translating this knowledge into a therapeutic opportunity.


Project Goal: Identify non-ATP competitive STK33 inhibitors with Ki values less than 200 nM using myelin basic protein as the substrate which inhibit >80% of STK33 autophosphorylation and have at least 10 fold selectivity against Protein Kinase A (PKA), Proteing Kinase C (PKC), and Protein Kinase B (AKT).
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1ML_NUMString
2IC_50(uM)FloatμM
Additional Information
Grant Number: 1 R03 MH089854-01

Data Table (Concise)
Data Table ( Complete ):     View Active Data    View All Data
Classification
PageFrom: