Bookmark and Share
BioAssay: AID 1855

Summary of probe development efforts to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP)

Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia ..more
_
   
AID: 1855
Data Source: The Scripps Research Institute Molecular Screening Center (M18AAP_INH_ LEADS_SUMMARY)
BioAssay Type: Summary, Candidate Probes/Leads with Supporting Evidence
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2009-07-09
Modify Date: 2013-12-04
Target
Depositor Specified Assays
Show more
AIDNameTypeComment
1822QFRET-based primary biochemical high throughput screening assay to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).screeningPrimary screen (PFM18AAP inhibitors in singlicate)
2170QFRET-based biochemical high throughput confirmation assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).screeningConfirmatory screen (PFM18AAP inhibitors in triplicate)
489011Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit P. falciparum growth in RBCsconfirmatoryLate stage dose response (P. falciparum growth inhibitors in triplicate)
489015Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based assay to identify compounds that inhibit P. falciparum growth in RBCsotherLate stage screen (P. falciparum growth inhibitors in triplicate)
492974Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Alanyl Aminopeptidase (PfM18AAP): fluorescence-based biochemical assay to identify inhibitors of rPfM18AAPscreeningLate stage screen (rPfM18AAP inhibitors in singlicate)
492975Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Alanyl Aminopeptidase (PfM18AAP): fluorescence-based biochemical assay to identify inhibitors of malaria cell lysatescreeningLate stage screen (malaria cell lysate inhibitors in singlicate)
588678QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP)confirmatory
588679Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP)confirmatory
588680Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1AAP (PFM1AAP)confirmatory
588696Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the human M18 Aspartyl Aminopeptidase (hM18AAP)confirmatory
588714Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP)confirmatory
602219Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1AAP (PFM1AAP) (2)confirmatory
602220Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP) (2)confirmatory
602221Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the human M18 Aspartyl Aminopeptidase (hM18AAP) (2)confirmatory
602222QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (1)confirmatory
602225Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (2)confirmatory
624174Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the human M18 Aspartyl Aminopeptidase (hM18AAP) (3)confirmatory
624175Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M17 Leucine Aminopeptidase (PFM17LAP) (3)confirmatory
624176Counterscreen for inhibitors of PFM18AAP: QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M1AAP (PFM1AAP) (3)confirmatory
624177QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (2)confirmatory
624205Vero Cytoxicity Assay: A Cell Based Secondary Assay To Explore Cytotoxicity of Compounds that Inhibit Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP) (3)confirmatory
1906QFRET-based counterscreen for PFM18AAP inhibitors: biochemical high throughput screening assay to identify inhibitors of the Cathepsin L proteinase (CTSL1).screening
2178QFRET-based counterscreen for inhibitors of PFM18AAP: biochemical high throughput confirmation assay for inhibitors of the Cathepsin L proteinase (CTSL1).screening
2195QFRET-based biochemical high throughput dose response assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).confirmatory
2196QFRET-based counterscreen for inhibitors of PFM18AAP: biochemical high throughput dose response assay for inhibitors of the Cathepsin L proteinase (CTSL1).confirmatory
720736Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based assay to identify compounds that inhibit P. falciparum growth in RBCs, Set2other
743024Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit P. falciparum growth in RBCs, Set 2.confirmatory
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number 1 R03 MH084103-01
Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
External Assay ID: M18AAP_INH_ LEADS_SUMMARY

Name: Summary of probe development efforts to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP)

Description:

Aminopeptidases (APs) are metalloproteases that cleave amino-terminal (N-terminal) amino acids during protein synthesis (1, 2) These enzymes are characterized in part by their post-translational removal of leucine, aspartate, proline, methionine, etc from proteins and peptides, in order that proteins are properly regulated, targeted for degradation, and trafficked within both animal and plant cells (3). As a result, these enzymes are involved in diverse processes, including meiosis (1), cellular senescence (1), blood pressure control (4, 5), angiogenesis (6), and inflammation (7). PfM18AAP is the sole aspartyl aminopeptidase (AAP) present in the genome of the malaria parasite Plasmodium falciparum (8). It exhibits exopeptidase activity exclusively against the N-terminal acidic amino acids glutamate and aspartate (9-11), is found in all intra-erythrocyte stages of the parasite (9), and functions to complete the hydrolysis of host hemoglobin to amino acids for use in de novo protein synthesis by the parasite (12, 13). Studies demonstrating that genetic knockdown of PfM18AAP results in a lethal parasite phenotype (9), and that inhibitors of methionine (14) and leucine (12, 15) aminopeptidases prevent malaria growth in culture and hemoglobin degradation, suggest that these enzymes are essential for parasite survival. As a result, the identification of selective inhibitors of PfM18AAP would elucidate this enzyme's role in the P. falciparum lifecycle, and serve as potential therapeutic agents to control malaria infection.

Summary of Probe Development Effort:

Following primary HTS in singlicate to identify PFM18AAP inhibitors (AID 1822), certain compounds were identified as possible candidates for probe development. A probe development effort is currently underway at the SRIMSC.

References:

1. Walling, L.L., Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin Plant Biol, 2006. 9(3): p. 227-33.
2. Meinnel, T., Serero, A., and Giglione, C., Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem, 2006. 387(7): p. 839-51.
3. Jankiewicz, U. and Bielawski, W., The properties and functions of bacterial aminopeptidases. Acta Microbiol Pol, 2003. 52(3): p. 217-31.
4. Banegas, I., Prieto, I., Vives, F., Alba, F., de Gasparo, M., Segarra, A.B., Hermoso, F., Duran, R., and Ramirez, M., Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst, 2006. 7(3): p. 129-34.
5. Silveira, P.F., Gil, J., Casis, L., and Irazusta, J., Peptide metabolism and the control of body fluid homeostasis. Curr Med Chem Cardiovasc Hematol Agents, 2004. 2(3): p. 219-38.
6. Zhong, H. and Bowen, J.P., Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr Med Chem, 2006. 13(8): p. 849-62.
7. Proost, P., Struyf, S., and Van Damme, J., Natural post-translational modifications of chemokines. Biochem Soc Trans, 2006. 34(Pt 6): p. 997-1001.
8. Wilk, S., Wilk, E., and Magnusson, R.P., Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem, 1998. 273(26): p. 15961-70.
9. Teuscher, F., Lowther, J., Skinner-Adams, T.S., Spielmann, T., Dixon, M.W., Stack, C.M., Donnelly, S., Mucha, A., Kafarski, P., Vassiliou, S., Gardiner, D.L., Dalton, J.P., and Trenholme, K.R., The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem, 2007. 282(42): p. 30817-26.
10. Gyang, F.N., Poole, B., and Trager, W., Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol, 1982. 5(4): p. 263-73.
11. Vander Jagt, D.L., Baack, B.R., and Hunsaker, L.A., Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol, 1984. 10(1): p. 45-54.
12. Nankya-Kitaka, M.F., Curley, G.P., Gavigan, C.S., Bell, A., and Dalton, J.P., Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res, 1998. 84(6): p. 552-8.
13. Lauterbach, S.B. and Coetzer, T.L., The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar J, 2008. 7: p. 161.
14. Chen, X., Chong, C.R., Shi, L., Yoshimoto, T., Sullivan, D.J., Jr., and Liu, J.O., Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A, 2006. 103(39): p. 14548-53.
15. Stack, C.M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D.L., Trenholme, K.R., Skinner-Adams, T.S., Teuscher, F., Grembecka, J., Mucha, A., Kafarski, P., Lua, L., Bell, A., and Dalton, J.P., Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem, 2007. 282(3): p. 2069-80.

Keywords:

Summary AID, Aspartyl aminopeptidase, PfM18AAP, M18AAP, rPfAAP, malaria, parasite, plasmodium falciparum, exopeptidase, primary screen, HTS, high throughput screen, 1536, inhibitor, fluorescence, peptide, cleavage, Scripps, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Please see AID 1822 for protocols performed in this probe development effort.
Comment
This probe development project is still underway at the SRIMSC.
Additional Information
Grant Number: 1 R03 MH084103-01

PageFrom: