Bookmark and Share
BioAssay: AID 1822

QFRET-based primary biochemical high throughput screening assay to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).

Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia ..more
_
   
 Tested Compounds
 Tested Compounds
All(290731)
 
 
Active(3498)
 
 
Inactive(287235)
 
 
 Tested Substances
 Tested Substances
All(290893)
 
 
Active(3502)
 
 
Inactive(287391)
 
 
AID: 1822
Data Source: The Scripps Research Institute Molecular Screening Center (PFM18AAP_INH_FLINT_1536_%INH)
BioAssay Type: Primary, Primary Screening, Single Concentration Activity Observed
Depositor Category: NIH Molecular Libraries Probe Production Network
BioAssay Version:
Deposit Date: 2009-06-18
Modify Date: 2010-06-15

Data Table ( Complete ):           Active    All
Target
Sequence: M18 aspartyl aminopeptidase [Plasmodium falciparum 3D7]
Description ..   
Protein Family: PTZ00371

Gene:PFM18AAP     Related Protein 3D Structures     More BioActivity Data..
BioActive Compounds: 3498
Depositor Specified Assays
Show more
AIDNameTypeComment
1855Summary of probe development efforts to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP)summary
1906QFRET-based counterscreen for PFM18AAP inhibitors: biochemical high throughput screening assay to identify inhibitors of the Cathepsin L proteinase (CTSL1).screening
2170QFRET-based biochemical high throughput confirmation assay for inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP).screening
2178QFRET-based counterscreen for inhibitors of PFM18AAP: biochemical high throughput confirmation assay for inhibitors of the Cathepsin L proteinase (CTSL1).screening
489011Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit P. falciparum growth in RBCsconfirmatory
489015Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based assay to identify compounds that inhibit P. falciparum growth in RBCsother
492974Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Alanyl Aminopeptidase (PfM18AAP): fluorescence-based biochemical assay to identify inhibitors of rPfM18AAPscreening
492975Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Alanyl Aminopeptidase (PfM18AAP): fluorescence-based biochemical assay to identify inhibitors of malaria cell lysatescreening
720736Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based assay to identify compounds that inhibit P. falciparum growth in RBCs, Set2other
743024Late stage assay provider results from the probe development effort to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (M18AAP): radiolabel-based cell-based dose response assay to identify compounds that inhibit P. falciparum growth in RBCs, Set 2.confirmatory
Description:
Source (MLPCN Center Name): The Scripps Research Institute Molecular Screening Center
Affiliation: The Scripps Research Institute, TSRI
Assay Provider: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
Network: Molecular Library Probe Production Centers Network (MLPCN)
Grant Proposal Number 1 R03 MH084103-01
Grant Proposal PI: John Dalton and Donald Gardiner, Queensland Institute of Medical Research, Australia
External Assay ID: PFM18AAP_INH_FLINT_1536_%INH

Name: Fluorescence-based primary biochemical high throughput screening assay to identify inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PFM18AAP)

Description: Aminopeptidases (APs) are metalloproteases that cleave amino-terminal (N-terminal) amino acids during protein synthesis (1, 2) These enzymes are characterized in part by their post-translational removal of leucine, aspartate, proline, methionine, etc from proteins and peptides, in order that proteins are properly regulated, targeted for degradation, and trafficked within both animal and plant cells (3). As a result, these enzymes are involved in diverse processes, including meiosis (1), cellular senescence (1), blood pressure control (4, 5), angiogenesis (6), and inflammation (7). PFM18AAP is the sole aspartyl aminopeptidase (AAP) present in the genome of the malaria parasite Plasmodium falciparum (8). It exhibits exopeptidase activity exclusively against the N-terminal acidic amino acids glutamate and aspartate (9-11), is found in all intra-erythrocytic stages of the parasite (9), and functions to complete the hydrolysis of host hemoglobin into amino acids for use in de novo protein synthesis by the parasite (12, 13). Studies demonstrating that genetic knockdown of PFM18AAP results in a lethal parasite phenotype (9), and that inhibitors of methionine (14) and leucine (12, 15) aminopeptidases prevent malaria growth in culture and hemoglobin degradation, suggest that these enzymes are essential for parasite survival. As a result, the identification of selective inhibitors of PFM18AAP would elucidate this enzyme's role in the P. falciparum lifecycle, and serve as potential therapeutic agents to control malaria infection.

References:
1. Walling, L.L., Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin Plant Biol, 2006. 9(3): p. 227-33.
2. Meinnel, T., Serero, A., and Giglione, C., Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem, 2006. 387(7): p. 839-51.
3. Jankiewicz, U. and Bielawski, W., The properties and functions of bacterial aminopeptidases. Acta Microbiol Pol, 2003. 52(3): p. 217-31.
4. Banegas, I., Prieto, I., Vives, F., Alba, F., de Gasparo, M., Segarra, A.B., Hermoso, F., Duran, R., and Ramirez, M., Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst, 2006. 7(3): p. 129-34.
5. Silveira, P.F., Gil, J., Casis, L., and Irazusta, J., Peptide metabolism and the control of body fluid homeostasis. Curr Med Chem Cardiovasc Hematol Agents, 2004. 2(3): p. 219-38.
6. Zhong, H. and Bowen, J.P., Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr Med Chem, 2006. 13(8): p. 849-62.
7. Proost, P., Struyf, S., and Van Damme, J., Natural post-translational modifications of chemokines. Biochem Soc Trans, 2006. 34(Pt 6): p. 997-1001.
8. Wilk, S., Wilk, E., and Magnusson, R.P., Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem, 1998. 273(26): p. 15961-70.
9. Teuscher, F., Lowther, J., Skinner-Adams, T.S., Spielmann, T., Dixon, M.W., Stack, C.M., Donnelly, S., Mucha, A., Kafarski, P., Vassiliou, S., Gardiner, D.L., Dalton, J.P., and Trenholme, K.R., The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem, 2007. 282(42): p. 30817-26.
10. Gyang, F.N., Poole, B., and Trager, W., Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol, 1982. 5(4): p. 263-73.
11. Vander Jagt, D.L., Baack, B.R., and Hunsaker, L.A., Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol, 1984. 10(1): p. 45-54.
12. Nankya-Kitaka, M.F., Curley, G.P., Gavigan, C.S., Bell, A., and Dalton, J.P., Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res, 1998. 84(6): p. 552-8.
13. Lauterbach, S.B. and Coetzer, T.L., The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar J, 2008. 7: p. 161.
14. Chen, X., Chong, C.R., Shi, L., Yoshimoto, T., Sullivan, D.J., Jr., and Liu, J.O., Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A, 2006. 103(39): p. 14548-53.
15. Stack, C.M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D.L., Trenholme, K.R., Skinner-Adams, T.S., Teuscher, F., Grembecka, J., Mucha, A., Kafarski, P., Lua, L., Bell, A., and Dalton, J.P., Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem, 2007. 282(3): p. 2069-80.

Keywords:

Aspartyl aminopeptidase, PFM18AAP, M18AAP, rPFAAP, malaria, parasite, plasmodium falciparum, exopeptidase, primary screen, HTS, high throughput screen, 1536, inhibitor, inhibition, fluorescence, QFRET, quenching fluorescence resonance energy transfer, peptide, cleavage, Scripps, Scripps Florida, The Scripps Research Institute Molecular Screening Center, SRIMSC, Molecular Libraries Probe Production Centers Network, MLPCN.
Protocol
Assay Overview:

The purpose of this assay is to identify compounds that inhibit the activity of M18 aminopeptidase of the malaria parasite Plasmodium falciparum (PFM18AA). In this biochemical assay, a commercially available fluorogenic peptide substrate (H-Glu-NHMec) is incubated with purified recombinant PFM18AAP enzyme (rPFAAP) in the presence of test compounds. Cleavage of the substrate by rPFAAP enzyme liberates the NHMec leaving group from the peptide, leading to increased well fluorescence. As designed, compounds that inhibit PFM18AAP will block rPFAAP-mediated cleavage of H-Glu-NHMec and liberation the NHMec leaving group from the substrate, resulting in decreased well fluorescence as measured at 340 nm excitation and 450 nm emission. Test compounds were assayed in singlicate at a final nominal concentration of 7.35 micromolar.

Protocol Summary:

Prior to the start of the assay, 2.5 microliters of assay buffer (50mM Tris HCl pH7.5, 4mM CoCl2, 0.1% BSA) containing 5micrograms/mL rPFM18AAP were dispensed into a 1536 microtiter plate. Next, 37 nL of test compound in DMSO, ZnCl2 (2mM final concentration), or DMSO alone (0.74% final concentration) were added to the appropriate wells. The plates were then incubated for 30 minutes at 25 degrees Celsius.
The assay was started by dispensing 2.5 microliters of 100 micromolar H-Glu-NHMec substrate in buffer (50 mM Tris HCl, pH 8.8) into all wells. Well fluorescence was read immediately (T0) on the Viewlux (Perkin-Elmer) and again after 90 minutes (T90) of incubation at 25 degrees Celsius.
Prior to further calculations, T0 was subtracted from T90 for each individual well. The difference between RFU values read at T0 (RFU_T0) and T90 (RFU_T90), named delta RFU, was calculated as follows:
delta RFU = RFU_T90 - RFU_T0

The percent inhibition for each well was then calculated as follows:
Percent inhibition = (test_compound_delta RFU - negative_control_ delta RFU)/(positive_control_ delta RFU - negative_control_ delta RFU)*100
Where:
Test_Compound is defined as wells containing test compound.
Negative_Control is defined as the median of the wells containing test compounds.
Positive_Control is defined as the median of the wells containing ZnCl2.

A mathematical algorithm was used to determine nominally inhibiting compounds in the Primary screen. Two values were calculated: (1) the average percent inhibition of all compounds tested, and (2) three times their standard deviation. The sum of these two values was used as a cutoff parameter, i.e. any compound that exhibited greater % inhibition than the cutoff parameter was declared active.

The reported PubChem Activity Score has been normalized to 100% observed primary inhibition. Negative % inhibition values are reported as activity score zero.

The inactive compounds of this assay have activity score range of 0 to 28 and active compounds range of activity score is 28 to 100.

List of Reagents:

rPFM18AAP enzyme (supplied by Assay Provider)
H-Glu-NHMec substrate (Bachem, part I-1180)
1536-well plates (Greiner, part 789176)
Tris (Amresco, part 0497)
CoCl2 6H20 (Univar, part D3247)
ZnCl2 (Sigma, part 208086)
Comment
Due to the increasing size of the MLPCN compound library, this assay may have been run as two or more separate campaigns, each campaign testing a unique set of compounds. In this case the results of each separate campaign were assigned "Active/Inactive" status based upon that campaign's specific compound activity cutoff value. All data reported were normalized on a per-plate basis. In this assay, ZnCl2 had an IC50 of approximately 0.525 uM. Possible artifacts of this assay can include, but are not limited to: dust or lint located in or on wells of the microtiter plate, compounds that modulate well fluorescence. All test compound concentrations reported above and below are nominal; the specific test concentration(s) for a particular compound may vary based upon the actual sample provided by the MLSMR.
Result Definitions
TIDNameDescriptionHistogramTypeUnit
OutcomeThe BioAssay activity outcomeOutcome
ScoreThe BioAssay activity ranking scoreInteger
1Inhibition (7.35μM**)Normalized percent inhibition of the primary screen at a compound concentration of 7.35 micromolar.Float

** Test Concentration.
Additional Information
Grant Number: 1 R03 MH084103-01

Data Table (Concise)
PageFrom: